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FOREWORD

Modem theories of static electric, magnetic, and gravitational potential-fields are based upon the
early investigations of Sir William Gilbert (1600) and of Sir Isaac Newton (1686) and upon
subsequent investigations covering more than two centuries by numerous other well-known
mathematicians and natural philosophers, culminating in the synthesis of electricity and
magnetism by Sir James Clerk Maxwell (1864) and the synthesis of gravitation and geometry by
Albert Einstein (1916). Applications of electromagnetic field theory and gravitational field
theory to the remote sensing of geophysical parameters through inverse modeling techniques has
been a major theme throughout the remainder of the 20th century. The Navy's interest in these
subjects stems from its Anti-Submarine-Warfare mission, from its concern for locating undersea
Hazards-to-Navigation, and from its interest in Attitude-Heading-Reference systems.

This report reviews and synthesizes, and in so doing self-consistently unifies through tensor
analysis, the subject of static geopotential-field theory with respect to rectangular-prismatic
bodies, which may be considered as the basic building blocks of natural geophysical phenomena.
Although this report originated from geophysical considerations, the mathematical expositions it
contains are generic in the sense that they are also applicable to remote sensing problems in the
fields of classical physics, biophysics, and engineering.

D. J. WHITFORD
Commander, U.S. Navy
Commanding Officer
Acting
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I. AABSTRACT

We review from first principles the forward and inverse geopotential modeling problem with

respect to the magnetic, electric, and gravitational fields. Under the assumption that any region

of the Earth's crust can be conveniently subdivided into rectangular prisms composed of

uniformly distributed geophysical parlmeters (i.e., magnetization, polarization, density, etc.), aI\
wide variety of generalized Poisson relations among the three potentials and their correspondingI\
vector and gradient fields as well as their colresponding geophysical parameters is established.

It is shown that when both vector and gladient tensor components of a potential field are*\
simultaneously available, inverse problems, $uch as determining the depth to the oceanic

magnetic basement, can be split into a purely "ge' metnc" problem, which seeks to determine the

dimension and position parameters of one or morý prisms and a purely "geophysical" problem,

which seeks to determine the physical properties (xe., the magnetization, polarization, density,

etc.) of the prism. The geometrical problem is nonlinear and must be solved iteratively using

standard stochastic or least-squares inversion techniq4es, while the geophysical problem is linear

and may be solved by direct inversion once the geom tric parameters have been established. By

splitting the inverse problem into two parts in this m er, the more troublesome aspects of the

well-known non-uniqueness problem associated wi, geopotential inversions are minimized

relative to other inverse modeling methods that attempt to solve for the geometric and

geophysical parameters simultaneously using scalar or vector data alone. This approach to

inverse modeling does not require direct measurement of the gradient field since any

2-dimensional regional survey of just one vector field component can, through rectangular

harmonic analysis, yield a potential function, which in turn can be used to compute all vector

and gradient tensor components of the measured field.

v
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-- . 1. INTRODUCTION

The Earth's crust is generally composed of a variety of inhomogeneities, the geometric

parameters (i.e., dimensions, orientation, distribution, etc.) and the geophysical parameters (i.e.,

magnetization, polarization, density, etc.) of which we seek to determine from scalar, vector, and

gradient tensor measurements of one or more geopotential fields (i.e., magnetic, electric, gravity,

etc.). As is well-known, the geopotential inversion problem is inherently non-unique in the

sense that for a specified potential field measurement, an arbitrary choice of the geometric

parameters defining the source of the potential field has a corresponding set of geophysical

parameters that will leave the observed potential field unchanged. Alternatively, an arbitrary

choice of the geophysical parameters has a corresponding set of geometric parameters that again

will leave the observed potential field unchanged. Fortunately, many of the infinite variety of

possible source geometry and geophysical parameter combinations that could produce a

Smeasured field are physically unrealistic. Unfortunately, many other possibilities are reasonable.

Selecting among all the reasonable solutions, that one which is actually the source of the

observed field is rarely, if ever, achieved. Instead, using supplemental information and

optimization techniques, the "most likely" solution is generally considered acceptable.

3 Historically, however, only the scalar and vector component measurements of a potential field

have been used to determine the geometric and geophysical source parameters. Gravity and

I geomagnetic data processing and interpretation techniques used during the decade of the 1960's

are summarized by Grant (1972). Inverse methods using the scalar field have been put forth by

Bott (1959, 1963, and 1967), Talwani (1965), Richards et al. (1967), Bhattacharyya and Navolio

1 (1975), Bhattacharyya and Chan (1977), Pedersen (1977), and Bhattacharyya (1980), while

3 those using vector fields have been based on techniques developed by Plouff (1976) and Barnett

I
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(1976), among others. These methods generally require a simultaneous solutions for both

the geophysical and geometric parameters of the inverse problem, a process which

leads to certain well-known ambiguities as discussed for instance by Skeels (1947) and Roy

(1962).

The inversion technique developed in this report takes further advantage of the gradient

tensor field, which is presumed to be either measured or derived from a rectangular harmonic

potential. The potential in turn is generated from survey measurements of its corresponding

vector field which covers the 2-dimensional region of interest. The addition of gradient tensor

information permits the separation of the geometric and geophysical portions of the problem.

This improves the stability of the inversion process. Advantage is further taken of the simplicity

of the rectangular prism geometry and of the assumption of uniformly distributed geophysical

parameters within each prism, which permits the closed form (i.e., non-numerical) evaluation of

otherwise complicated integrals. Any geological region can be reduced to a collection of such

prisms.

As a prelude to the inverse problem, it is first necessary to solve the forward geopotential

modeling problem corresponding to that of a geophysical parameter uniformly distributed within

a prism. This is an old problem which dates back almost 200 years and which has been solved,

forgotten, and resolved in piecemeal fashion over that time by a long list of researchers, perhaps

the first of whom was Poisson himself, who first formulated (1826) the connection between the

magnetic and gravity potentials, now referred to as Poisson's relation. Modem interest in

potential field modeling based on simple geometric structures resurged during the early part of

this century with the works of Kellog (1929) and Barton (1929), which laid the foundation for

the analytic results concerning rectangular prisms for vector and/or gradient tensor components

7' . 2



I "of the magnetic and/or gravity fields by Nettleton (1947), Sorokin (1951), Haaz (1953),

Bhattacharyya (1964), Nagy (1966), Goodacre (1973), Plouff (1975a, 1975b), and Okabe (1979

and 1982), among many others. These efforts, however, did not fully exploit the high degree of

unification that exists between the gravity and electromagnetic fields. This, we attempt to do in

a methodical fashion. In doing so and to remain self-contained and internally consistent from a

notational point of view, many well-known results will be rederived, others will be generalized,

and new results generated to fill in a few gaps that still remain in the forward problem of

modeling geopotential fields generated from rectangular prisms uniformly filled with an

appropriate geophysical parameter. Along the way, the usefulness of rotational invariants that

may be constructed from the various geopotential-field vector and gradient-tensor components

will be pointed out, and generalized Poisson relations will be constructed and tabulated.

Also, through the generalized Poisson relations that are derived from the forward modeling

results, the connection between the potential fields and the Riemann curvature tensor in the

3 weak gravity-field limit of General Relativity is made, along with the observation that any

classical unified field theory (i.e., any extension of General Relativity) must reduce in the weak

U gravitational/electromagnetic field limit to the Newtonian/Maxwell geopotential fields of the

3 forward model. This in turn necessarily places a constraint on, and provides a possible starting

point for, the development of a classical unified field theory.

I In the discussions that follow, a local Cartesian coordinate system will be used such that the

3 X-axis is oriented toward the North, the Y-axis is oriented East, and the Z-axis is oriented

vertically down into the Earth. The observed potential field data sets derived from geophysical

surveys, which are originally collected in geodetic coordinates, must therefore be appropriately

3 preprocessed to isolate the crustal contribution to the fields as they appear in the local Cartesian

3I



frame. Our procedure is first to remove temporal variations, which in the magnetic case

amounts to removing such effects as the Solar Quiet Daily Variation (Sq DV) and its

corresponding induction field, using nearby magnetic observatory data, and subsequent removal

of the Earth's core-generated, long-wavelength features from the data, using an appropriate

spherical harmonic model (e.g., WMM-90 to degree 12 for magnetic field data and WGS-84 to

degree 18 for gravity data). Second, a rotation of the residual potential field vector and gradient

components from geodetic to rectangular coordinates is performed using the spherical coordinate

system as an intermediate stage. The corresponding coordinate transformations are also

performed. Finally, biases and linear regional trends are removed from the residual field

components. The resulting residuals of each field component are then assumed to be generated

by the geophysical properties of the local crustal materials. It is with these properties that we are

concerned.

2. THE MAGNETIC FIELD

2.1 Theoretical Background

Because the electromagnetic field obeys the superposition principle, modeling the magnetic

field due to non-uniformly magnetized oceanic crust in some region of the Earth, which may be

characterized as a collection of uniformly magnetized prisms, reduces to the analysis of only

one prism. This analysis begins as usual with Maxwell's equations, which in Gaussian units are

given by the following relations:

V * D = 41ra (I a)I

V.B=O (Ib)

4



VXE + 18-0 (c)

VxH -LaD = 4 (ld)

where all of the parameters have their usual meanings as do those in the accompanying

constitutive relations:

D=E + 41cP (2a)

H=B + 4nM (2b)

j and the generalized form of Ohm's law:

I J=A.E (3)

i where iq is the conductivity tensor. A dimensional analysis of the constitutive relations shows

I that the units of the electric displacement D, the electric field E, and the electric polarization P

i are equivalent in Gaussian units, which are taken to be statvolts/cm. Likewise, the respective

units of the magnetic induction B, the magnetic field H, and the magnetization M in Gaussian

i units are also equivalent and are taken to be nanoTeslas (nT). The electric charge density a has

j units of statcoulombs/cm3, the current density J has units of statamps/cm2 , and the conductivity

tensor i has units of sec-". The speed of light c has units of cm/sec.

In the discussions that follow, a local Cartesian coordinate system is used, which is oriented

so that the positive X-axis is directed North, the positive Y-axis is directed East, and the positive

I
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Z-axis is directed vertically down into the Earth. It is assumed that the field observations have "

been reduced as explained in the introduction and that we are dealing with the resulting

residuals that are generated by the Earth's crust alone. Then, under the assumption that no

electric fields, currents, or charges are present, the magnetic fields are necessarily time 3
independent, and Maxwell's equations reduce to their magnetostatic forms:

V.B=O (4a) I

VxH=O (4b)

with eq. (2b) as the only remaining constitutive relation. The second of these equations implies

that the magnetic field, H(r), is the gradient of some scalar magnetic potential (D(r),

(units: nT-cm). That is:

H =-V (5) I

I
By taking the divergence of eq. (2b) and combining the result with eqs. (4a) and (5), the

following familiar Poisson equation is obtained: I

V2 0 = 4n V * M (6) I
It has the well-known solution: I

0D(r) V Ir-r't d3r/ (7)I

I
I
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3 Here, we use the notation of Jackson (1975), where the primed coordinates range over the

magnetized volume V', while the unprimed coordinates refer to the point of observation. This

expression for the magnetic potential is valid regardless of whether or not the point of

observation r is inside or outside the magnetized volume.

Eq. (7) may be written in more convenient form by employing the following identity:

VO(*FM) = MoVI + 'VoM (8)

i where, if the scalar function T is identified as:

'1(r,r') - ir r/I (9)I
then:

4/(r) =- . M(ro d3r' + M(r') V' ( r-rt d3r' (10)i
Using the divergence theorem, it can be shown that the first integral vanishes over any volume

n that completely encloses the volume V'. In the second integral, use may be made of the rule:

r r/_ I_(_rr/

i Thus, the magnetic potential reduces to its most useful form:

I
I

! 7

IM!



4r V. Irr dr1 " (12)(l)r) -r V'Ir-r'I dr

Now, measurements of the magnetic field are usually made in regions of space that are void

of any magnetic materials, as is the case with aeromagnetic surveys, for instance. In such

regions the magnetization vector M(r) is zero, so that by eq. (2b), H(r) = B(r). Consequently,

eq. (5) reduces to: 3

B(r) = - Vcb(r) (13) 1
II

The gradient of B(r) yields the magnetic gradient tensor S(r) (units: nT/cm):

S(r) = VB(r) (14)

Both B(r) and 5(r) are measurable quantities. The state of the art in magnetic gradiometry is

discussed by Fram et al. (1974), Kekelis (1984), and Hastings et al. (1985).

In the local Cartesian reference frame, the magnetic induction and its corresponding gradient I
tensor, expressed in terms of their respective vector and tensor components, are written as: 3

B(r) = B.(r)i + By(r)j + B,(r)k (15) 3
I

a~• a~y a~zI Il
a~y aBY aBy (16)

a% aB Z a%

8
ax ay I



I . Rather than using the above notation to describe the vector and gradient tensor components of

the magnetic field, we will find it more convenient to use tensor notation. In tensor notation, the

coordinates and cornesponding subscripts x, y, and z are replaced by numerical indices ranging

from 1 to 3 such that x' = x, x2= y, and x' = z. Then, for instance, B2= By and 92, = aB2/aX'

=_O aBy/az. We further employ the single slash notation "/ " to denote Euclidean differentiation

and the double slash"//" to denote non-Euclidean differentiation, where the curvature of the

metric space must be considered. For the moment, we will be concerned only with Euclidean

space, for which our example reduces to: X23 = DBy/z = B2. So, in general, the vector and

tensor components of the magnetic field are denoted as BP and • respectively, where the

Greek indices g. and v range from I to 3. As a further notational point, we emphasize that in a

Euclidean or Cartesian coordinate system, there is no distinction between contravariant vector

3 and tensor components with raised indices (e.g., M, ) and covariant vector and tensor

components with lowered indices (e.g., 2,, ). Consequently, we will use the convention that all

indices are to remain lowered unless they are being summed over. Then, in accordance with

Einstein summation notation, the index being summed over, which must necessarily appear

twice in a given mathematical expression, will have one index raised and one lowered. Then, as

an example:

Z ,ff" (17)

3 This convention will be used exclusively unless otherwise explicitly stated to the contrary.

Using this tensor notation, which corresponds to that of Adler, Bazin, and Schiffer (1975),

9
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eq. (13) becomes:

13= - (DIM (18) 1

while eq. (14) becomes:

II
A.= Bp/v (19)

Also, recalling that the point of observation r is assumed to be outside of the magnetized volume 3
V' so that H(r) = B(r), the magnetostatic eqs. (4a) and (4b) reduce to the following: I

BI= 0 (20a)

B11- Bv,• = 0 (20b)

Using eq. (19), eqs. (20a) and (20b) may also be written as: 3

41=0 (21a) I
A.V= Sp(21b)I

Furthermore, since SU., is the gradient of a vector, it is by definition a tensor. Equation (21 a)

states that the trace (i.e., the diagonal element sum) of the tensor is zero, while eq. (21b) says

that this tensor is also symmetric. These two symmetry conditions, which may be viewed as

constraints on the magnetic field gradient tensor, reduce the number of the tensor's independent

10



components from 9 to 5. Designers of magnetic gradiometers take this fact into account to

reduce the electronic complexity of the instrument. However, some redundency may be useful

in actual field situations.

2.2 Related Magnetic Vectors, Tensors, and Rotational Invariants

From the vector Bj, and the gradient tensor I , a variety of potentially useful vectors,

tensors, and scalar invariants can be constructed. These invariants can be used as additional

tools to help identify and interpret the underlying crustal geology. For instance, the following

vector may be constructed:I
I B;,, (22)

The vector 03, (units: nT2/cm) may be viewed as the projection of the magnetic gradient tensor

i onto the magnetic induction vector. From it may be constructed its characteristic

rotational invariant (units: nT2/cm):I
JO - (23)

3 Additionally, limiting the discussion only to tensors of rank two, it is possible to construct the

following four new tensors:

3 a* OP O (24a)

I3iv m 01, Bv (24b)

I, I
'% : _ I



. I*,, ax, (24c)

Bit v Bit Bv (24d)

Similar tensors can also be constructed from the electric and gravitational fields. Three of these

tensors, P., (units: nTV/crm2), 9,,,, (units: nT2/cm 2), and B., (units: nT2) are symmetric, while the

tensor 2,,, (units: nT3/cm) has both symmetric and antisymmetric parts. By taking the trace of

these tensors, several additional rotational invariants can also be constructed. Although we will

not dwell upon them, we point them out so that these invariants may be exploited for their

long-range and short-range dependencies, as the needs of a particular application dictate. We

define these invariants as follows:

SN i -I-(25a)

-0 a -A, (25b)

O a (25c)

B w •(25d)

The last invariant, B, is just the total magnetic intensity, while 9' is the total magnetic gradient.

From these invariants, it is possible to generate three other invariants that have dimensions of

inverse length (i.e., units: cn"'):

12



1B
QI f/ (26a)

Q2 "/B2 (26b)

Q3 • -/B 3 (26c)

It so happens that all three of these invariant functions, in the far field, vary inversely with

distance from the source (i.e., as r '). This can be seen by noting that in the far field, BP varies

as r 3, while S, varies as r4. By taking ratios of these invariants, three more dimensionless

invariants can be generated which in the far field are constant, but in the near field are highly

variable and may be quite sensitive to subtle variations in the source structure or composition.

These are:

I
q, M QI/Q2 (27a)I
q2 N Q2/Q3 (27b)

q3 M Q3/QI (27c)

Some of these invariants may prove to be more useful than others as tools for geological

interpretation. One that does seem to be particularly interesting is Q1, which is simply the ratio

of the total magnetic gradient intensity to the total magnetic field intensity. It has the desirable

3I feature of being independent of the orientation of the magnetization vector of the source body.

Thus, the source body lateral extention is more sharply defined than with traditional methods.

'I
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2.3 The Uniformly Magnetized Rectangular Prism 3
The static magnetic field generated by an arbitrarily shaped body which has an arbitrary

distribution, orientation, and intensity of magnetization can always be represented as having U
been generated by a collection of uniformly magnetized rectangular prisms. It is, of course, 3
possible to use other elementary geometries such as multifaceted polyhedrons as the basic

building blocks. However, for local field analysis we see no special advantage in doing so.

Instead, we prefer to maintain the unique compatibility that rectangular prisms have with the

Cartesian coordinate system.

Now, consider a single rectangular prism with sides parallel to the coordinate axes, the

orientation of which we have previously defined. The center of this prism with respect to the

origin of the coordinate system is located at the point r. = (xo, yo, zo). The prism dimensions are

taken to be X, , k, and X,. along their respective coordinate axes. When this prism is assigned a

uniform magnetization M, having constant components M, = M1, My = M2 , and M• = M3 so

that: 3

M= M1 i + Myj + Mzk (28) 3

then it is possible, as is shown in Appendix A, to evaluate eq. (12) for the scalar potential, O(r), I

in closed form and thereby obtain the following expression:

<(r) = (30)

where the elements of the f,(r) matrix, which are explicitly listed in Table 1, are purely

14
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I. I. Table 1. Elements of the Q) Matrix

+ ~~~~(x 1 a-~' Y)(z-z') i

f212 (y -y')infR[+ (z- z)] JI I..,1

I - (z - z') In[R + (y - y')] ".1."I

2 = - (x - x') ln[R + (z - z1)] ,'./.,/

K222 = + (Y - y') tan-'[ (1Z-)(-z)_ ] ,

0f23 = - (z-z) ln[R + (x-x1)] Ix,.,,.•

I31 = - (x - x') In[R + (y - y')] x,.Y,. ,

I 32 = - (Y - Y) In[R + (x - x)] I,.,

I233 = + (z - z') tan-'[ I-"] I,.

I
I

I .. .= I| IIII



geometric in character, depending only on the position r, the prism dimensions, and the prism

location ro. Both r and r0 are referenced to a conveniently chosen origin.

As a matter of notational convenience, we have defined the constant vector C

e = £.! + E2j + e3k (31)

so that each of its components is equal to one. That is:

el =e = • 3E1 (32)

The virtue of defining the vector, e, in this manner is that the mathematical forms of various

geopotential field equations are considerably simplified.

In Table 1, the notation I . .. ý.. is used to indicate that the primed coordinates are to be

evaluated at the boundaries of the prism as indicated in Appendix A. Also in Table 1, the

parameter R is defined to be the Euclidean distance between the source prism and the point of

observation:

R = J(x-xl)2 + (y-y')2 + (z-z/)2  (33)

Although it is possible to derive an expression for the magnetic induction vector, B(r), by

directly taking the gradient of eq. (30), it turns out to be simpler to combine eqs. (12) and (13)

and then to evaluate the resulting integrals as shown in Appendix B. The vector components of

the magnetic induction vector, thus obtained, are expressed quite simply in tensor notation as:
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Bp p= M (34)

where the elements of the 3 x 3 matrix A(r), which are listed in Table 2, are, like those of the

matrix 12 to which it is related, purely geometrical in character.

Figures (la), (ib), and (Ic) illustrate the three components (x, y, and z respectively) of the

magnetic field vector B generated according to eq. (34) by a single prism with unit

magnetization M oriented vertically downward in the positive Z direction. The computations

I were performed on a surface situated a unit distance above the prism. Figure (Id) illustrates the

magnetic total intensity for the same situation. The scale in these figures is arbitrary. Therefore,

these figures could represent the magnetic field generated by a rock sample a few centimeters in

diameter in the laboratory, or they could represent the magnetic field generated by a large

volume of ocean crust several kilometers in diameter. Figures (2a), (2b), and (2c) are vector

components of the magnetic induction B. (North), B. (East), and B. (Vertically Down)

respectively for a multiple prism situation simulating a region encompassing a magnetic reversal

in the oceanic crust. The magnetic reversal axis straddles the East-West coordinate axis. North

of this axis, the magnetization is vertically upward, while South of this axis, the magnetization is

vertically downward. The magnetizations are of unit magnitude in both directions. The prism

dimensions are arbitrarily chosen to be of unit length. Figure (2d) is the total magnetic intensity

for this situation. The observation plane is a unit distance above the line of prisms. The

magnetic field contribution of each prism is added vectorially at each grid site on the

observational plane.

17
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Table 2. Elements of the A Matrix

I (y-x')R

A12 = - [n[R + (z - z')] ,

A, 3 = - In[R + (y - y')] ,,.,,,

A 21 = - In[R + (z - z')] ,

A22 = + tan-' [(X-A)(Z-Z/) ]

A23 = - In[R + (x - x')] I,,

A3, = - In[R + (y -y')] ,,.

A32 = - In[R + (x - x')] I

A33 = + tan-['r -'> ] I ,,,, 1
L (z-z')R

18
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It is perhaps helpful to view the fQ matrix as a transformation that maps the magnetization

vector M into the magnetic potential 0, while the matrix A acts as a transformation that maps

the magnetization vector into the magnetic induction B. The relationships among components

I of these two matrices, which are in fact tensors of rank two, are found by combining eqs. (18),

(29), and (34), which yields:

Il, = 10/ved (35)

I The magnetic gradient due to the rectangular prism is obtained by combining eqs. (19) and

(34), which yields:

IMv = A•'%VML (36)I
The gradient of A appearing in eq. (36) forms a tensor of rank 3. It maps the magnetization of

I the rectangular prism into the magnetic gradient tensor. The components of this third-rank

tensor are listed in Table 3. These components are obtained by taking the indicated derivatives

of the elements of the A matrix and simplifying the resulting algebraic forms.

The A matrix is symmetric, and if the point of observation r extends beyond the boundary of

the volume V (denoted as aV ), then it is also traceless. If r is within this boundary, then the

trace of A is a nonzero constant. These results may be summarized in the following way:

Av = Av, (37a)

SI-4n rV(37b)A• = 0 r > oV 3b
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Table 3. Derivatives of the A Matrix Elements

Al,,1 = + +[ (z-') +

AII,2~ ~ r (n-K') ]I.Y.

A,113 = y.~ IX'.Z/

A12/1  = ( - 31)~~ I ' . Z'

AA = , (z-z')

RI R4.(y-y')j X
1

7
1

Z

A13/2 w - I IX'.Y'.Z'

A2 131 3 - i[~i] 1
X',Y',Z'

A221 /I - [ (x- x III./. ,''

A-a.R ,R (z-z1) (uy)1

Av3= - I I ,IY/,

'2I R I R + (-xl R +(z-z') j
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I Table 3. Derivatives of the A Matrix Elements (con.)

SAn/ 31  = - -L[ ix'y'a'

3A 23/1 = - -L I .

UA 23/2 = - -L lx-'. Y' Z,

IA2 3 /3 = -LR (21 I..X

3A 31/1 = - "

A3 21 I , . '

A31/2 " - R y

3 ~A 3 1/3 = - -j[ (Z[11] IxY'z

3 ~~~A3 2/1,=-iRz I./,Y/,ZI

UA 3 231  I - .. )[~~ 'X'Y'Z

U ~ ~A33 /1  = - +L ftjZy'] yi

RI+yy
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We are primarily concerned with the situation for which the trace is zero. Together, these last

two equations imply that A has just 5 independent components. Using eqs. (37a) and (37b), it is

possible to deduce, in conjunction with Table 3, the following symmetry relations among the

gradient components of A: I
I

Alv/, = Avli/x (38a) I
Aiv, = A =.tiv = Avx/p (38b) I
A"'/X = 0 (38c) I

These symmetry relations substantially reduce the number of independent components of the

gradient of the A tensor from a possible 27 to just 7. I
2.4 Geomagnetic Inversion

Still considering a single prism, it should be clear that at any observation point r, eq. (34) can

be formally inverted to give: I
I

MX= X. B1 (39) I
where X is the inverse of the 3x3 matrix A and has elements that satisfy the following relation: I

JA A.v =Sv (40) I
where 8,, is the Kronecker delta function. Subsequent insertion of eq. (39) into eq. (36) yields a

I
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relationship between the magnetic field and its gradient that is independent of the magnetization:

4IV = A)//vA)°Bo (41)

This is the main result. Essentially, a decoupling of the geophysical and geometric

parameters has taken place. Since the magnetic field and its gradient are both measurable

quantities, eq. (41) is in essence a nonlinear system of five independent equations for the six

unknown geometric parameters of the magnetized prism, namely: r. and X. , Xy., and A., Since

there are more unknowns than equations, this system of equations is underdetermined. For this

reason and also because magnetic field measurements contain errors and extraneous

environmental noise, it is necessary to make some additional assumptions regarding the size or

location of the prism in order to reduce the number of unknown geometric parameters.

Alternatively, it is possible to make many field measurements at a variety of locations, in

which case, this system of equations will be overdetermined. In either case, or when the two

approaches are combined, the problem is a nonlinear one which can be solved via stochastic

inversion techniques. Having thus determined the prism's geometric parameters, the tensor A(r)

is considered to be known and is unique in the least-squares sense as being generated by the

"most likely" or "optimal" set of prism parameters. Knowledge of this tensor then permits eq.

(39) to be solved via a straightforward linear inversion to obtain the "most likely" or "optimal"

magnetization (the geophysical parameter) of the prism, which is referred to as the "equivalent"

magnetization of the prism. This is the magnetization one expects to obtain if the actual

magnetization were truly smeared out uniformly over the entire prism, and the "most likely"

geometric parameter solution is also the environmentally "true" solution.

39

I



2.5 Practical Applications to Large Area Aeromagnetic Surveys

To determine the crustal magnetization and depth to the magnetic basement (i.e., to the basalt

layer), it is not actually necessary to measure the gradient field in order to apply the inversion

technique described above. If a 2-dimensional vector aeromagnetic survey is performed over a

given area, it is possible to use the vector magnetic data to compute a rectangular harmonic

potential function from which the gradient data may be computed. The procedures used in the

July 1981 Juan de Fuca Project MAGNET vector aeromagnetic survey performed by the Naval

Oceanographic Office serve as a practical example of the kind of data manipulation that is

necessary to use this inverse modeling technique successfully (Quinn and Shiel [1993]).

The Juan de Fuca survey area, which covered the geographical region from 470 N latitude to

510 N latitude and from 1240 W longitude to 1300 W longitude, was densely surveyed at a 500-ft

altitude in the East-West direction with approximately 3 nautical miles between these survey

tracks. A few North-South tracks were also flown for control. The effective along-track data

sample rate was 0.5 Hertz, while the speed of Project MAGNETs RP-3D Orion aircraft was

approximately 240 nautical miles per hour. Magnetograms from a nearby geomagnetic

observatory at Victoria, British Columbia, were used to monitor and remove temporal magnetic

variations. A portable Vector Magnetic Ground Station (VMGS) was also established at

Mc Chord Air Force Base near Tacoma, Washington, for the same purpose. This data set was

edited for spurious elektronic noise spikes, and the Main magnetic field was removed using the

1980 Epoch Goddard Space Flight Center (GSFC 12/83) spherical harmonic model (Langel and

Estes [1985]) up to harmonic degree 12. The residual X-, Y-, and Z-components of the entire

data set were each uniformly gridded and interpolated as necessary into lat x Ion cells of 1.5

arcminutes x 1.5 arcminutes (i.e., roughly half the East-West track line separation) such that
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ach magnetic component consisted of 256 x 256 grid points. The gridding process has the

advantage of smoothing out instrument noise, navigational errors, and other environmental noise

that cannot otherwise be accounted for and thus eliminated. The coordinates of each grid point

were then transformed from geodetic to rectangular coordinates, using the spherical coordinate

system as an intermediate step. At the same time, the vector components at each grid point were

rotated from geodetic to rectangular coordinates, also using the spherical coordinate system as an

intermediate stage. Biases and linear trends in the North-South and East-West directions were

then determined and removed from the residual grids of their corresponding components. These

biases and trends were also saved as the "regional" models of the survey area. Subsequently, a

I 2-dimensional Fast Fourier Transform (2-D FFT) was performed on only the Z-component grid.

I This procedure results in a set of complex Fourier coefficients in the wavenumber domain which

are algebraically related in a simple way to the real coefficients of a rectangular-harmonic

I magnetic potential-function model of the surveyed area. This model is composed of 256 x 256 =

65,536 coefficients. Having determined the rectangular harmonic model in this way, it is a

straightforward process to recompute, using the 2-D FF1', not only the vector magnetic

I components but the magnetic gradient components as well. The result is a set of 3 vector

component grids and 5 independent gradient component grids, each with 256 x 256 grid points.

Since all of these magnetic component grids were derived from the original Z-component grid,

they are necessarily consistent with each other. The original vector component grids derived

directly from the survey data would not have been as consistent because each vector component

observation contains unique instrumental errors and environmental noise which are then passed

on to the grids generated from those measurements. Therefore, in the inversion process that

follows, we use the X-, Y-, and Z-component grids generated from the model, which in turn is
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derived from just the observed Z-component gridded data, rather than using the X- and

Y-component grids generated directly from the observed data. The computed and observed

Z-component grids are identical since this component is used to generate the model.

At this stage each grid point has associated with it the "observed" magnetic vector

components BA and the "observed" magnetic gradient components 9-,, . Here, the word

"observed" is used loosely since each grid value of a magnetic vector or gradient component is

based indirectly on measured data through the rectangular harmonic model, which in turn is

derived from observed data. Magnetic gradients, - generated from eq. (41) using "only" the

"observed" magnetic "vector" components will be referred to as the "computed" magnetic

gradients. Thus, for each magnetic gradient component at each grid point there exists an

"observed" and a "computed" value. It is therefore possible to solve for the geometric

parameters for each grid point by setting up a X2 function which is the sum of the square of the

differences between the "computed" and "observed" values of the five independent gradient

components for each grid point. In the Juan de Fuca case, we first made a few assumptions

based on knowledge of magnetic sources in the oceanic crust to constrain the inversion problem

in order to eliminate some variables. Since it is known that the oceanic crust typically has two

magnetic layers, one about .5 km thick with reasonably high magnetization and another layer

about 1 km thick directly below the first layer, but considerably less magnetic, we fixed the

thickness of a single prism to be 1.5 km thick. The lateral prism dimensions were also fixed to

be 5 km on a side (about the same length as the estimated depth to source). The prism was

centered below the particular grid point of interest so that there was a minimum of 2.5 km from

the grid point to the edge of the prism. From a geomorphological point of view, dramatic
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variations in depth or magnetization should not dominate for such small lateral distances.

Consequently, the influence of magnetized material much beyond a prism edge, 2.5 km from

the observation point, should be comparatively small and can therefore be neglected.

I Consequently, the only parameter yet to be determined is the magnetic source depth z0 of the

prism's center. It can be evaluated by minimizing the X2 function:

2 3 3

x 1 3 _ )2 (42)I p)I v.1

This function was minimized by varying the depth parameter at . 1-kmn increments from the

known bathymetry base on NAVOCEANO's 5-Minute Digital Bathymetric Data Base (DBDB5)

i downward, well beyond the poorly estimated Curie depths, computing the X2 function at each

depth and noting where the minimum occurred. Having obtained the magnetic source depth, zo,

in this manner, eq. (39) was used to compute the equivalent magnetization of the prism. This

procedure was performed independently for each individual grid point until the entire survey

area was covered, yielding a 256 x 256 grid for magnetic source depth and the same size grid for

each of the three components of the magnetization vector. The results from one grid point to the

next were smoothly varying (i.e., not noisy) over the entire area. This is attributed to smoothing

that takes place during the gridding process and also to the additional use of self-consistent

3 magnetic parameters, all derived from the same rectangular harmonic potential. Since the

inverted data are generated on the same grid as the input data, the results are easily profiled as

I functions of either latitude or longitude.

4
I
I 43



Because the dimensions of the prism were somewhat arbitrarily chosen, the resulting depths,

though reasonable, were not taken as absolute. This is not a limitation of the method, since we

could have optimized the prism dimensions along with the depth. Prism dimension constraints

were applied to the Juan de Fuca survey due to the large size of the survey area and the resulting

computational burden it entailed on an older mainframe computer. Also, some additional

non-uniqueness concerns arise when all geometric parameters are allowed to float freely.

Finally, improved depth-to-source determinations are possible through more detailed

modeling techniques using multiple prisms stacked vertically below a grid point and which are

assumed to have varying magnetization, by iterating (i.e., by computing the residual magnetic

field and gradient field components after the characteristics of one prism have been determined

and solving for the depth and magnetization of a second, less-thick prism constrained to be at

shallower depths below the same grid point) and by making other fairly simple refinements.

2.6 Inverse Magnetic Modeling with Multiple Prisms

Although reasonable results can be obtained, even for large ocean areas of complicated

geomorphology such as the Juan de Fuca region, improved results ought to be expected through

more detailed modeling with multiple prisms. In this case we consider a collection of

magnetized prisms foliated within part, or all, of the oceanic crust beneath a surveyed area.

Depending on the situation, one may fix the number of prisms a priori or view the number of

prisms, N, as another parameter to be determined as part of the least-square or stochastic

minimization procedure. One can further allow the prisms to vary in size and to overlap, in

which case the resulting magnetizations in the overlapping regions would simply add vectorially.

Alternatively, one could constrain the prisms not to overlap and perhaps even fill the entire
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I , volume of the oceanic crust below the surveyed area with adjacent prisms, each of the same

fixed dimensions. Regardless of the choices made, the multiprism inversion technique is

basically the same, although computationally more demanding, than that for a single prism.

The generalization to the multiprism case is straightforward. It is now assumed that there is a

total of K observations of the magnetic field and gradient field components which are presumed

to be the composite of all fields generated by a total of N prisms. Then, at the k'th observation

point rk, eqs. (34) and (36) generalize to the following:

IN
Bkk= T_.(AP M;o k= 1,2,...K (43)

0-l kn

AI = nI AL/ kMxk=1,2..K(4

i where the notation has been chosen to convey the following meanings: BAi B,(r- )

Si ,, = M ,,I(rk), (A,'L)I= AA.'L(rk, r'.), and (A.7/,J )m Al,*/v (rk,r'.). Additionally, M. is the

X-component of magnetization of the n'th prism, which is centered about the point r'o(.

Equations (43) and (44) can be written more succinctly in matrix form as follows:

I = rT'J1 . (45)

I IU = 'IP'• JIIL (46)

where, for a total of K observations and N prisms, the matrices in the above equations take the

i following forms:
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Ba I

Bp2

RIA= *(47)

BOK

*BL (48)

(APv) 21  *

* (49)

(A,1 ')KI * 0 0 0 (A&L )KN

(AP'/v)n (Ap',,)12 (Ap /V)13 0 0 (A~ 9 v)IN

(AMl',v)21

=p 0 0 (50)

(All x v)KI 600 * (Am x /V)KN
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MX2

MXj
* =(51)

MXN

A formal inversion of eq. (45) then gives the magnetization matrix Aix in terms of the matrix

R, containing the magnetic field vector component observations:

31=4 1 "•p (52)

where T•P is the transpose of Tv" with respect to the Latin indices n and k, and where the matrix

Mlx is the inverse of the N x N matrix nvx, which is defined as follows:

I n,,•, = Tv, Tp,% (53)

Inserting eq. (52) into eq. (46) accomplishes the desired separation of the geophysical and

geometric parameters and yields:

I
IJBaV = T1'M nXrh "JO (54)

I The right side of this equation, by virtue of the three Einstein summations involving the indices

3 x, P, and 4, contains 27 terms, each term being the product of 4 matrices. Equation (54) is

therefore a rather large system of nonlinear equations involving only the geometric parameters
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associated with the N prisms and must be solved iteratively using stochastic or generalized 3
inversion techniques. Thereby, a unique solution in the "optimized" least-squares sense can be

obtained. The number of prisms, N, can also be included as one of the unknown parameters or

the number of prisms may be set a priori. The solution for the geometric parameters, thus 3
determined from eq. (54), then provides, in conjunction with eq. (52), a straightforward linear

inversion problem for the determination of the vector components of the magnetization in each

of the N prisms.

2.7 The Computational Algorithm MAGREP

Subroutine MAGREP (MAGnetic field due to a REctangular Prism) computes the magnetic

scalar potential O(r) from eq. (30), the magnetic induction vector B(r) from eq. (34), and the

nine elements of the magnetic gradient tensor 5(r) from eq. (36) given the magnetization,

position, and dimensions of prism. It is assumed that the user of this routine has written a driver

program for the MAGREP subroutine that defines the prism parameters and passes them to

MAGREP through a common block called /MAGBLK/. It is further assumed that the position

of the prism is referenced to an origin located at the lower left-hand comer of a user-defined

surface. The point of observation is also referenced to this origin. The rectangular components

of the observation point are passed to MAGREP through the CALL statement, which also 3
returns the computed magnetic field values. The field observed at a single observation point

generated by multiple prisms is the sum of outputs of MAGREP for each prism. The prism can U
be rotated with respect to the rectangular coordinate axes associated with the coordinate origin

through a set of three Euler angles that are also passed to MAGREP from the driving program

through the common block. When the Euler angles are zero, the prism is unrotated, and its sides
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U • are parallel to the coordinate axes. Documentation with a detailed description of these and other

parameters is contained in the FORTRAN code of the subroutine which is listed in Appendix E.

This subroutine is well suited for simulating magnetic fields generated by a variety of

geophysical entities such as seamounts, as well as those of man-made origin, such as ships,

planes, trains, etc.

3. THE GRAVITY FIELD

3.1 Theoretical Background

Modeling a gravitational field that is generated by some crustal feature or collection of

features begins with a pair of equations that may be considered as the gravitational analogue of

Maxwell's magnetostatic equations. The static gravitational field equations are:

SVeg = -4 Gp (55a)

3 Vxg =0 (55b)

I where g is the gravitational acceleration vector (units: gal = cm/sec ), G is the universal

3 gravitational constant (G = 6.6720 x 10' cm3/gm-sec2), and p is the density contrast of the

Earth's crust (units: gm/cm3 ).

Equation (55b) indicates that the gravitational acceleration vector may be considered as the

I gradient of some scalar potential U(0) (units: cm2/sec2 ), the units of which correspond to those

3 of energy per unit mass. Consequently:

5 g= -VU (56)
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This equation, when combined with eq. (55a), yields the familiar Poisson equation for the I
gravitational field:

V2 U = 4xGp (57) 3

which has the well-known solution: I

U(r) = -G Pr) d3r/ (58)

Equation (58) is valid for any observation point r regardless of whether or not r is inside or

outside the gravity field source volume V'. In the event that the observation point r is

outside of this volume, then eq. (58) must also satisfy Laplace's equation:

V2U = 0 (59) U
The solutions to this equation are also well-known, depending on the coordinate geometry as

rectangular harmonic functions, spherical harmonic functions, etc.

The gradient of the gravity acceleration vector, g, yields the gravity gradient tensor I
(units: sec" 2): 3

9(r) = Vg(r) (60) 3

Both g(r) and S(r) are measurable quantities. The state of the art in gravity gradiometry is

discussed by Jordan (1978, 1985) and Wells (1983).
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As in the magnetic case, the gravity acceleration vector and the gravity gradient tensor may

be decomposed into their respective Cartesian components such that:

g(r) = g.(r)i + gy(r)j + g,(r)k (61)

and

Sag. agyas

a- 5;r) = - 577 (62)
iag. agy N

In tensor notation, the components of the gravity acceleration vector are denoted as g,, while

the components of the gravity gradient tensor are denoted as 99,,, where, as in the

magnetic case, the Greek subscripts p, v, A, etc., range from 1 to 3 so that g9 = g9, 1 2 = gy,

g, = & , and 9,, = ag/•ay, etc. Using this notation, eqs. (55a) and (55b) are cast into the

[] following forms:

I L/ = -4nGp (63a)

I g9/V - g•/P = 0 (63b)

Also, eq. (56) becomes:

g=-U,/ (64)

I
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while eq. (57) takes the form:

e4 = 4x p (65)

Finally, eq. (60) in tensor notation becomes: I
NIL= g ,L (66)

Now, by combining eq. (66) with eqs. (63a) and (63b) it is found that:

e = -4xGp (67a)

WI=-'ýWI (67b)

That is, the gravity gradient tensor is symmetric, and its trace is proportional to the density p at

the point of observation r. In particular, when r is outside the volume V', the trace is zero, so

that:

,= 0 (68)

Finally, we know that %;,v is a tensor because it is the gradient of the gravity acceleration vector,

and by definition, the gradient of any vector or tensor is also a tensor.
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3.2 Related Gravity Vectors, Tensors, and Rotational Invariants

As in the magnetic case, the components of the gravitational acceleration vector g. and the

components of the gravity gradient tensor W. may be combined in various ways to form a

variety of other vectors, tensors, and rotational invariants, in direct analogy with the magnetic

field. These quantities are additional tools that may be used to examine the field observations in

ways that hitherto have been overlooked or which may become more useful as sophisticated

gradiometric instruments become more widely available. They can yield supplementary

information concerning the underlying structure and density contrast of a surveyed area that may

be used to constrain the density morphology model of that area. From the vector g4 and the

tensor So. we can, for instance, construct the vector Y, and its corresponding scalar invariant Y

(units: cm/sec'):

9'- gx (69a)

"F,-P (69b)

Additionally, the following four tensors of rank two may also be constructed:

I M " Y* (70a)

I a = (70b)

9I" NJ - (70c)

I91tv - gPgV (70d)
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Three of these tensors, y,, (units: cm2/sec" ), • (units: sec' ), and g4, (units: cm2/sec4 ) are

symmetric, while the tensor Y,, (units: cm 2/sec 6 ) has both symmetric and antisymmetric parts. 3
Rotational invariants constructed from the traces of these tensors are defined as follows:

Y ,(71a)3

Y M (71b)

9's (71c) 3
ga1- g(71d) 3

3
The last invariant, g (units: cm/sec2 ), is simply the total gravitational acceleration (i.e., the

magnitude of the gravitational acceleration vector), while Y (units: sec-' ) is the total i
gravitational gradient. Equations (69b)and(71 a) are different expressions for the same 3
parameter, -y. The invariant Y has the same units as the tensor Y,, itself. 3

In the far field, the gravitational acceleration, g, will vary as 1/R2, where R is the distance

from the source of the gravitational field, while the gravitational gradient T9 will vary as IIW. I
Consequently, in the far field, y will vary as I/R. , and Y will vary as R7 . Furthermore, i
several combinations of these invariant parameters form other invariant parameters that have a

I/R dependence in the far field and also have units of inverse length (i.e., units of cf' ). These

are: I

5
I
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P1  9 ,"/g (72a)

P2  Y/g 3  (72b)

P 3 =S2/y (72c)

Ratios of these parameters in turn wi.l yield dimensionless parameters that are constants in the

far field, but which may be quite sensitive to subtle variations in the source geometry or

composition in the near field. These are:

PI = PI/P 2  (73a)

P2 = P2/P3 (73b)

P3 - P3/PI (73c)

These parameters simply provide a different way of looking at the gravitational field and ought

to be viewed as additional tools in the repertoire of modem geopotential analysis, which may,

under the appropriate circumstances, be exploited. Their value stems from the fact that their

dependence on the radial distance from the source is quite different from that of the gravity field

or its corresponding gradient tensor field.

3.3 The Uniformly Dense Rectangular Prism

The last section reviewed the essence of Newtonian gravitational field theory without

specifying the nature of the gravitating body or bodies. Now, as in the magnetic case, we
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represent sources of gravitational fields as being composed of a collection of rectangular prisms,

each of which is assigned a uniform density, which may be different from one prism to another.

Considering just one such prism oriented with its sides parallel to the coordinate axes, we

again characterize the prism as having its center at the point ro = (xo, y0 , Zo) with respect to

some coordinate origin and as having dimensions X,, , k , and X• along their respective

coordinate axes. Then, given that the density, p, of the prism is constant, eq. (58) can be

evaluated for the gravity potential U(r), as is shown in Appendix C, yielding the result:

U(r) = -eorFxD" (74)

where the elements of the r matrix are listed in Table 4, where e% represents the components

of the constant vector e, which was previously defined in eqs. (31) and (32), and where D.

represents the components of the density vector D (units: sec2 ), which is defined by analogy to

the magnetization vector M so that:

D a Gpe (75)

Then, in terms of its components D, we have:

Dx, = GpEl (76)

This equation simply means that D, = D2= D3= Gp. Introduction of the density vector allows

us to put eq. (74) and related equations into a convenient and compact form that is comparable

to eq. (30) for the magnetic case. The F matrix (units: cm 2 ) is symmetric, as can be directly
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3 Table 4. Elements of the r Matrix

r.1 = + (x - x')2 tan-'[ (Y-Y')(-] I..,/

I~~ ~ = x--''l'.

r 12 = - (x - x')(y - y') In[R + (z - z1)] I ,,,

r P13 = - (x - 0 (z - z') In[R + (y - y')] I, '.,.,

r2, = - (y - y')(x - x') In[R + (z - z/)] / ,

I Ir2 = + (y - y') 2 tanr-[ZZ'--_ I ,

r F23 = - (y - y/)(z - z') In[R + (x - x')] I ,,

I r 3 = - (z - 2!)(x - x') In[R + (y - y')] x,.,.,,

Ir3 = - (z - 2)(y - y') In[R + (x - x')] I.,.,.'

r F33 = + (z-z')2 tan-'[ -"I .-"').z

I5
I
It
I
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verified by an examination of Table 4. Therefore: 3

rpv = rvp (77) II
However, it has a nonzero trace regardless of whether or not the point of observation is inside or

outside the gravitational source volume V'. I

Taking the gradient of eq. (70) will yield the gravity acceleration vector g due to a prism of

uniform density. It turns out to be somewhat easier to obtain the mathematical expression of the

acceleration vector by taking the gradient of eq. (58) and subsequently evaluating the resulting I
integrals, as is shown in Appendix D. These integrals are the same as those previously 3
encountered for the magnetic potential. Performing the necessary computations yields the

following result for the gravity acceleration vector components: I

g) = Q1'xDx (78) 1I
where the elements of the 11 matrix (units: cm) have been previously encountered and are listed I
in Table 1. This matrix has no special symmetry or trace properties. However, by

combining eqs. (64), (74), and (78), its relationship to the 1r matrix can be established as:

.= - ,(79) I
I]

Combining this result with eq. (35) we also note that:

I[Ajv r;/11 ue (80)
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Since the density p is constant, so is the density vector D. Consequently, inserting eq.

(78) into eq. (66) yields the following form for the gravity gradient tensor:

3 = (81)

7UThe derivatives of the Q matrix, obtained by direct computation and subsequent simplification,

are listed in Table 5. When eq. (81) is combined with eqs. (35) and (76), the following basic

result is obtained:

v 7- GpA=tA (82)

Since the gravity gradient wv is known to be a tensor by virtue of the fact that it is the gradient

3 of a vector, and since the factor Gp is just a constant, eq. (82) implies that the A transformation

matrix encountered in the magnetic case is also a tensor as is its gradient. Furthermore,

combining eqs. (67a) , (68), and (82) leads to eq. (37b).

I A variety of additional relationships among the various components of the gradient of the a

matrix can be obtained by examining the symmetry properties of the A tensor in the context of

eq. (35) and also by direct examination of Table 5. Several of these relationships are listed in

5 Table 6.

I
i 3.4 Gravity Inversion

Although there are some differences, the gravitational inversion procedure follows the same

5 basic line of thought as was outlined for the magnetic case. We first note that multiplication of
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Table 5. Derivatives of the Ql Matrix Elements

0111,, = Atl + ~ zz)+~~~2 (Yy

RILR+(g-y') j

=-I F(zL-x)(Y Ii

Q 1212 A A12  R [R+:2] z-z) .Z

012/3 = y R Y)z I I.y/z

013/ R LR+(y-y J X3'y z2

C113/2 (.- . 1 .1 Iz

0 33= A13 - _1 ( ,- ,2

R L R+(y-y'j I'

02, 11 = A1- R '111.3114

022/1 = - [R~~~ R L,.yz

0~22/2 = A22 + Y.j!) [r (x-z') + R+zz) j'y'z

-RL60+(-l IZ



U ~Table 5. Derivatives of the Ql Matrix Elements (con.)

g. fl~~C22/3 = - i 1 P~

I fl~~~~C23/1 = - i.~)1z,'z

C123/2 = - (y Y) ___ Y

I (z-z')
1123/3  = A23 - , [ J I. .3!'.Y,

R(R a')Z 1I ~031/1 = A31 - L +yy I .3! .

R R('-")o I

I0f 3112 = .. /,

I fl~~3211 = -!j?

I f 32/2 = A32 - i[R-:!)] I."Y'

flv3=- ' r(Y-Y')(z-z')] ."

031= - (Z-4~2  X/ i~ z

f133 /2 = - [R-.,
2
Z~ 1x."y,. .

I L33/3 = A33 + (ZZ [ -y' + XR Ly'I
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.................

Table 6. Summary of Matrix Identities and Symmetries3

=0

rpv)Lale~v= rpva/)ep£

Qlv= - rvE

1 0 r > iV'

Av= Av

AXP= 0

Avx= Apv= Axj
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5 "eq. (82) by X* , the elements of the inverse of A, and subsequent contraction (i.e., setting two

indices equal to each other causing a summation) of the indices immediately yields the inverse

U relationship:I
Gp = IW" VIAV (83)I

This equation permits the determination of the density p of a single prism given the geometry

(i.e., the location and dimensions) of that prism through the inverse matrix X and given

measurements of the gravity gradient field that surrounds the prism. However, we really want to

be able to determine not only the density, but also the geometry (size and location) of the prism.

I This more general problem is intrinsically non-unique if all that we have to work with is eq.

3 (83). Fortunately, there is more that can be said.

Begin by denoting the inverse of the 3 x 3 matrix f1 as ?i . The elements of these two

5 matrices satisfy the relation:

I r0h '- =8PV (84)

I
where 8,, is the Kronecker delta. The elements of this inverse matrix are defined by the relation:I

i V = cofaclor(•w) (85)

Then, quite formally the inverse of eq. (78) is:

ID = II;" go (86)I
Combining this result with eq. (81) then gives the basic result:

I
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, =n (87)

Consequently, a decoupling of the geometric parameters (i.e., xO, yo , zo, , and X ) from

the geophysical parameter (i.e., the density p) has been accomplished. The intention, then, is to

solve the nonlinear problem indicated by eq. (87) for the geometric parameters and subsequently

solve the linear problem indicated by eq. (83) for the geophysical parameter. Due to the

symmetry and trace properties of the gravity gradient tensor which leave five independent

components, there are more unknown geometric parameters, a total of six, than there are

equations to solve for them. Consequently, either one uses gravity measurements obtained at

several locations, or one may make some restrictive assumptions about either the dimensions or

location of the prism. In either case, the solution can be obtained by stochastic or generalucd

inversion techniques that attempt to minimize a chi-square (e2) function constructed from the

differences between the gravitational gradients computed from eq. (87) and the measured

(observed) gravity gradients. Note, however, that it is not necessary to measure the gravity

gradients directly since they may be computed from a rectangular harmonic potential function

derived from measurements of the Z-component of the gravity acceleration. Also, advantage 3
can be taken of the fact that the X-component and Y-component of the gravity acceleration

vector can be computed in terms of the Z-component. The general procedure is the same as that

outlined for the magnetic survey of the Juan de Fuca region.

It is useful to examine eq. (78) in more detail. It represents the following three equations: 3

= 1 GP p(fDa + 1112 + f1 3) (88a) 3
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I

92 = GP 0121 + 1222 + 0l23) (88b)

1 3 = GPig1 31 + C132 + 1133) (88c)

I

Taking the ratio of eq. (88a) with eq. (88c) and taking the ratio of eq. (88b) with eq. (88c) then

yields:I
(OlI + 0 12 + 113 ) 

(9
1i (fl31 + f•l 2 + 133(89a)

0121 + Q22b + f23))U (1131 + f132 + 33)g3

-These equations show explicitly the dependence of the g, and g2 components of the gravitational

acceleration vector on the third component, g3 , which is the component that is most frequently

measured. From eq. (88c) we also find that:

Ip = 93 _ - D D2 = D3 (90)Gp=(11'31 + 1132 + 1133)

I This equation can be used to determine the density of the prism once eq. (87) has been used to

determine the geometric parameters and hence Q.

I
3.5 Inverse Gravity Modeling with Multiple Prisms

SI Generalizing to multiple prisms, we now consider the Earth's crust beneath a gravitationally

3 surveyed area to be foliated with a total of N prisms, each of which has its own uniform
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density, p.. The gravitational acceleration vector and the gravitational gradient tensor at the k'th

observation point, rk , are then composite sums of the gravity fields generated by the individual

prisms. Therefore:

N

9P 1 (9 1 a)
B-1 ko

N

%PVk 1: (nx /, (9 1 b)

where, as in the magnetic case, the subscript, k, identifies a particular point of observation, rk

such that g,. n (r I,,al k n flQ'irkNJ), and 0 Q,, (rkr.).

D. is the 4 component of the density vector in the n'th prism, which is centered about the point

r'0o.

In more succinct fashion, eqs. (91 a) and (91 b) may be written in terms of matrices as:

S= Op x (92)

OJLV = "-•;'I; (93)

where, assuming there exists a total of K observations for each component of the gravity field

and the gravity gradient field, the matrices in the above equations take the following explicit

forms:
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g10I

U gIL)(94)

I ,Iv= (95)

Ili (96)I

I= (IL.)K (ti A) (96

IL 0L /VpX01 v

p ( /V)K, p 0 n )KN

I6



Du

lox (98)

A formal inversion of eq. (92) yields the density matrix A , in terms of the gravity

acceleration matrix GAS

lox= 3vx,)IV61, (99)

where O'0 is the transpose of the matrix e"v with respect to the Latin indices n and k, and

where the matrix &L is the inverse of the N x N matrix Avx, which is defined as follows:

Ax = 0• VOex (100)

Inserting eq. (99) into eq. (93) yields the desired separation of the geometric and geophysical

parameters:

It EI;VAOxu 6 (101)

The right-hand side of this equation consists of 27 terms which result from the three Einstein

summations over the dummy indices a, j3, and X . Choosing as an example, just one of these

terms which corresponds to the index specification: g =1, v = 2, X = 3, a = 1, and J3 = 2, we

obtain the typical termr: y.3E 32 O 2 , where B, 3 is a K x N matrix, A23 is an N x N matrix, Ot2

is an N x K matrix, and 61 is a K x I matrix.
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Equation (101) is a complicated nonlinear system of equations involving 6N+1 unknown

geometric parameters; the number of prisms N, being the one extra unknown. Had we not

already pre-specified the orientation of the prisms as being aligned parallel to the coordinate

axes, there would be an additional three unknown Euler angles per prism to be evaluated,

yielding 9N+I unknowns. Problems such as these can be solved by stochastic inversion or

generalized inversion techniques. Such solutions, having been optimized, are therefore unique

in the least-squares sense as being the "best estimate" of the unknown parameters. Once

determined, the geophysical parameters follow directly from eq. (99).

3.6 The Computational Algorithm GRVREP

Subroutine GRVREP (GRaVity field due to a REctangular Prism) computes the gravity

potential U(r) from eq. (74), the gravity acceleration vector g(r) from eq. (78), and the nine

elements of the gravity gradient tensor W(r) from eq. (81) or equivalently, eq. (82). It is

assumed that the user of this routine has written a driver program for the GRVREP subroutine

that defines the prism parameters and passes them to GRVREP through a common block called

/GRVBLK/. It is further assumed that the location and orientation of the prism are related to the

origin in the same manner as for Subroutine MAGREP, as discussed in Section 2.7. The

FORTRAN code for this subroutine is internally documented and is listed in Appendix F.

I 4. THE ELECTRIC FIELD

Considering again only static sources, the electric field can be analyzed using the results

already obtained for the magnetic and gravity fields. There are two separate situations that can

be considered. The first assumes that the source of the field consists of a charge density a(r')
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that is contained in some volume V'. The second assumes that the source of the field is a material

within the volume V' containing an electric polarization P(r'). In either situation, it is assumed

that there are no electric currents and that the volume V' can be broken into one or more

subvolumes in each of which the charge density and the polarization may be considered uniformly

distributed.

4.1 Fields Generated by an Electrically Charged Medium

The mathematical analysis of a static electrically charged medium has a one-to-one

correspondence to that of the gravitational case previously described since, under the

electrostatic assumptions, Maxwell's equations reduce to the following:

V•E = 4n a (102a)

VxE = 0 (102b)

These equations are identical in form to eqs. (55a) and (55b). Therefore, the results regarding

gravity fields in section (3) may be taken over completely if we replace g by E and -Gp by a.

We also chose to make appropriate notational replacements such that U -- P, -,,, and

DX -4 Qx correspond to the electrostatic potential (units: statvolts), the electric field gradient

tensor (units: statvolts/cm2), and the electric charge density vector (units: statCoulombs/cm3 ),

respectively. Using thif notation, the results for a single rectangular prism containing a

uniform charge density are summarized a!ong with magnetic and gravity results in Table 7.
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i -Table 7. Summary of Field Equations for the Single Prism Geometry

GRAVITY ELECTRIC ELECTRIC MAGNETIC

Source: Source: Source: Source:
uniform mass density uniform charge density uniform polarization uniform magnetization

U = - Fox F-0"W v7= -- , r"EaQx Ip = -ioCaPx 4 = - 2x.EM;,

i= -v= = .=

g, = Q" D. E, = f2P Q. Epp = A, = Al M).

Ip- = flL.vx 81,= L2I X/ Q pip = AjyAx/Epx VAiv = Ap x VAm0B

IWIL = GpA,, 8,, = -yApv

WpIv = svp8A = 8vpL 8hhV = 
6
9pvp T1iiv

I -4.C= - .•. , = 1 °R '"' p = 0 r> V' a = 0 r>
0o r>av' 0 r ,> a,

I

I
SDx. Gp ex Qx. = - o X

I
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4.2 Fields Generated by an Electrically Polarized Medium

Maxwell's equations for this case take the following electrostatic form:

V-D = 0 (103a)

VxEP = 0 (103b)

These equations are identical in form to eqs. (4a) and (4b) of the magnetic case. Consequently, I
the results of that case may be taken over completely if we make the appropriate notational

replacements M--P, 0-0•/• . and O,- . Here, 1// is the electric potential (units:

statvolts), and O.,• is the electric field gradient tensor (units: statvolts/cm2 ) due to the

polarization P . The subscript (p) has been introduced to distinguish the present electrically

polarized medium case from the electrically charged medium case of the previous section.

Using this notation, the results for a single uniformly polarized prism are also summarized in

Table 7. These seem to be the least used of the geopotential relations derived in this report.

However, it should be noted that other non-geophysics applications for them do exist. I1
5. CONNECTIONS AMONG THE ELECTRIC, MAGNETIC, AND GRAVITY FIELDS

Over a century and a half ago, Poisson (1826) noticed that close a relationship exists

between the magnetic potential and the gravity potential when the sources of those potentials are I
uniformly distributed over the same volume. Similar relationships exist between the electric 3
field and the gravity field potentials, as well as between the electric and magnetic potentials.

These relationships can be extended to include the vector and gradient components of these

fields as well.
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I.
U TTaking just the relationship between the magnetic and gravity fields as an example, we find

that if eq. (31) is multiplied by the factor Gp and subsequent note of eq. (82) is taken, one of the

many possible forms of Poisson's relation is obtained:I
GpBIL = WM;. (104)

which, after multiplication by B, ,gives:

U "' ),,) (105)I
or, after inverting eq. (104), we have:I

MX = (•IL B,) Gp (106)

Also, after inserting eqs. (18), (64), and (66) into eq. (104) and subsequently integrating with

respect to dx"L, Poisson's relation can be expressed in standard form with respect to the gravity

and magnetic potentials, as:

I
S= U" MX (107)

I where the arbitrary constant of integration has been set to zero. Furthermore, by taking the

gradient of eq. (104) another form of Poisson's relation is found to be:

GpB;,/ = Wi X/V MX (108)

I
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All of the above forms of Poisson's relation for the gravity and magnetic fields are expressed in

terms of the geophysical sources parameters (i.e., magnetization and density) of those fields.

However, if eqs. (106) and (108) are combined, then the source parameters may be eliminated.

The result is a most interesting relationship between the fields themselves:

S= , B" (109) 1

Thus, given a priori knowledge of the gravitational field, this equation may be considered as a

coupled system of linear first-order differential equations for the three components of the

magnetic field. This can be seen more clearly if eq. (19) is inserted on the left-hand side of

eq. (109), thereby yielding:

BP = 9/Vý.' B. (110)

This equation embodies the essence of a classical unification of fields since it permits one of the

two otherwise unrelated fields (i.e., gravity and magnetism) to be derived from the other without

reference to any additional fields or source parameters. This relationship goes well beyond the

standard Poisson relations for these fields. From this point of view, it seems reasonable to

suggest that eq. (110) and other equations similarly derived for the electric field might be

considered as classical, static, weak-field-limit approximations of a true classical unified field

theory (i.e., an extension of General Relativity) and that eq. (110) ought to be considered as

supporting evidence for the existence of such a theory.

In defense of this notion, we mention as an aside that there is a connection between the A
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I " matrix and certain components of the Riemann curvature tensor, 9 , of General Relativity.

3 The Riemann curvature tensor is a tensor of rank four, which characterizes the geometry of a

4-dimensional Riemann space. Here, Latin indices range from 0 to 3, while Greek indices still

range from 1 to 3. In a 4-dimensional Riemann space, the zero'th coordinate is related to time,

3 which, when multiplied by the speed of light, c, has units of length. Then, in addition to the

three space coordinates x' = x, x2 = y, and x3 = z, we also have x° = c t. Details regarding

the definition of the Riemann curvature tensor and its relationship with the gravitational field

3 equations of General Relativity and its Newtonian approximation are discussed by Adler, Bazin,

and Schiffer (1975). Here we simply note that linearization of the gravitational field equations

of General Relativity in the static, weak-field approximation yields the following result:I
g~a 0 0 =_--U/U0 = 2 O -Gp AU,(11

C2 2 = 2 (lll)

which establishes the connection betweern the Riemann curvature tensor and the A matrix.

Furthermore, if we denote the inverse of the 3 x 3 matrix W'o0 as ,('°o so that:

R YO 0uO = (112)

I
we find that eq. (110) can be put into the form:

I B./v -= o B0  (113)

3 A similar result can be obtained for the static electric field. Using results such as these, it may
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be possible to extend these field relationships to covariant 4-dimensional form and thereby

obtain a system of classical unified field equations, which in the limit of weak electromagnetic

fields reduce to the tensor form of Maxwell's equations and the equations of General Relativity.

That such a classical unified field theory should exist, regardless of what further unifications I
may exist at the quantum level, is discussed by Tonnelat (1966a, 1966b). 3

Several other Poisson relationships exist between the electric and magnetic fields and

between the electric and gravitational fields. They can be derived almost by inspection in a

manner that is essentially the same as that described above between the magnetic and

gravitational fields. For one more example, take the case of the electric field E,(r) due to the

polarization P(r) and their relationship to the magnetic induction B(r) due to the magnetization

M(r). Using the correspondences established in Section 4.2, we can say that:

EPP = AlxPX (114)

This has the following inverse relationship:

P= X•. E (115) I
Taking the vector dot product between the polarization vector and the magnetic induction vector

using eqs. k 115) and (34) and subsequently taking note of the symmetry of the A matrix and

using eq. (40), we obtain the following Poisson relation:

B1 PI = Mx Ex (116)
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Taking -the gradient of this equation and noting the definition of the magnetic gradient tensor

given by eq. (19) and that the electric field gradient due to polarization d',(r) is similarly defined

in terms of the electric field due to polarization E,(r), we find, due to the uniformity of the

magnetization vector and the polarization vector, another Poisson relation:

I 3pj = J oV MX (117)I
By multiplying through eq. (117) by the inverse of the magnetic gradient tensor, we find that:

I

Alternatively, multiplying eq. (117) by the inverse of the electric field gradient tensor, we find

that:

wM = a,•.PX (119)

The symmetry property of the two gradient tensors was also used to derive eqs. (118) and

(119). These and other Poisson relations are listed in Table 8 and Table 9. However, this

list of relations is not an exhaustive one. Furthermore, they are not exclusively applicable to

I geophysics problems. They can also be applied to problems in biophysics, engineering, etc.

I
I
I
I
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Table &. Poisson Relations Among the Gravity, Electric, and Magnetic Fields I

Sources: Sources: Sources: Sources:

mass density mass density charge density charge density& & & &

polarization magnetization polarization magnetization

Gp = (="") = GpG = ( .B* ) - ( ,"--) 4,,x a = - ( --- * ) %"

I/P = " 0 = -V P P , BD= - MII

'gv=W ix/V aI ,LEpa 5Jp, = WI) /V 7B ýg a 13 tv ,/;,(J.XA v =91x A'.

I7

I
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I .
I Table 9. Poisson Relations Among the Gravity, Electric, and Magnetic Fields 11

* Sources: Sources:

mass density magnetization

charge density polarization

IU P= -- P

I~~ ~~ -- 5. V OyLV)

g = - PIABJE
=-Gp&A r - E-p PP Bp = Epx M)
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3 Recalling eq. (12), which is an expression for the magnetic scalar potential 4(r) in terms of

3 the vector magnetization M(r'), we now specify that this magnetization be uniformly distributed

over the volume V' of a single rectangular prism and hence is a constant vector M, so that:3
o(r) -M fJ V 1 ' I) d3r' (Al)

V/

I I In Cartesian coordinates this equation takes the form:

3 0(x,y,z) = M.l" + Myly + MzIz (A2)

3 where M. , My, and M. are the constant components ot the magnetization vector M, and where

the following notation has been used:

3(xyZ)= -JL-( ) dx dy'dz' (A3a)

I Vt

iy(x,Y,Z) f j" -L~dx'dy'dz' (A3b)

I.(x,y,Z) f -ý-{k)dx'dy'dz' (A3c)

V
t

where:

I
I
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R a Ir - r1 l = Ax-x + y(y - + Z-z (A4)

The integrals I,, Iý , and I. are just cyclic permutations of the same mathematical form.

Therefore, it is sufficient to evaluate just one of these integrals, for instance 1,,, and obtain the

others by permuting x, y and z appropriately wherever they occur. Thus, taking I, and

performing the indicated derivative with respect to x gives:

I(x,y, z) = dx' dy' dz' (AS)

The volume of integration, V' , is taken to be a rectangular prism centered about the point

ro= (xo, yo, z0) with its sides parallel to the coordinate axes and having dimensions X,, Xl,, and

X. Consequently,

Zu Yu XU

I-(X'Y'Z) = (x - Idx') d z MIf(x,y,z) = f J f R3  dxdydz' (A6)

ZL YL XL

where the upper and lower limits of integration are defined as follows:

XL=A-, (A7a)

xu = xo + (A7b)

A-4



I.

YL = YO - "T (A7c)

Yu = Yo + 2 (A7d)

;LZO (A7e)ZL = Zo -- 2

ZU = ZO + 2. (A-

In the event that we were dealing with multiple prisms, each term in the above set of equations

would include the additional subscript n, which identifies a particular prism. Integrating first

with respect to x', gives:

I.(x,y~z) = f d Ix, (AS)

ZL YL

3 where we have used the shorthand notation:

I jXIaI=Xu

X/ - (A9)

to indicate the limits of evaluation of the x' coordinate. Subsequently, the same notation will

also be used for the limits of the y' and z' integrations.

3 Next, integrating over the y' coordinate, the following result is obtained:

I
I
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ZU

(,(x,y,z) =- in[(y - yl) + R]dz' Ix/.y1 (AIO)

ZL I
The first two integrals over x' and y' are found in standard mathematics tables of integrals. The

last integral over z' is not as easy to evaluate. In order to perform this last integration, first l

defime: 3

u=(y-y') + R (All) 1

Using eq. (A4) for R, the above equation can be solved for (z - z') in terms of the variable u:

z - z ± S(u) (A 12) I
where:

S(u) U _r -Y _ -,, _ (X _-,2_( Y/)2 (A 13)3

I
Taking the derivative of eq. (A 12) then gives:

dz' dS(u) (A 14)

Now, S(u) is always positive since it is just equal to I z - z'. So, the ± signs above must be

chosen to correspond with the sign of (z-z'). Thus, the positive sign (+) is chosen if

z -z' 0, while the negative sign (-) is chosen if z - z' < 0, the sign changing at the point

A-6 I



iU.

U z = z'. Consequently, the integral I1 is broken into two parts as follows:

ld(x,y,z) = f- fIe In[(y-y/) + R]dz/ + fJU In[(y-y') + R]dz&' Ix/,y/ (A15)

Then, in terms of the variable u, the integrals in eq. (A15) may be written in the following

manner:

3. ((x,y,z) = -! - In(u)dS(u) + JUI In(u)dS(u) I x/,y/ (A16)
U"L ts(z)

where, by the notation uL and uu we mean u(z' =zL) and u(z' = zu) respectively. Integrating

by parts gives:

11(X'Yz) = S(u) In(u) Iz) + S(u) In(u) l (z)+ au- du - "J--L) du 'x ,y1 (A17)

The argument underneath the square root in S(u) is just quadratic in u. Therefore, the two

integrals in eq. (A17) may be partially evaluated using Gradshteyn and Ryzhik (2.2671),

yielding:

l 1(x,y,z) = S(u) In(u)I'" + S(u) In(u) 11"z) + S(u)I , - S(u) I"1z) - (x-xI)2 .(Z) •u )9z UL1Uz L U S(u)

+(x X/)2 J su,) (Y - Y.) s(.)'-u + (Y _ Y/) JU S)} IXIy/ (A 18)
E()U ')UL S() (Z) SU

Finally, using Gradshteyn and Rhyzik (1980) sections 2.261 and 2.266 it is found that:

A-7



M,(x yz) I - ,In(u)] S(u) Ij' - -In(u)]S(u) - x') tan-, ("",)-

+ (x-x_/) tanl[ (z .Y I.) ] U ) - (y - y) Is(,) + , - (y')] IN'

I
+ (y - y")n[S(u) + u- (y -yI)-]I,,)} IX/,'/ (A 19)

Recalling the definition of u given in eq. (A 10), the above equation becomes:

I.(xyz)= - {Iz-zA (I - in[RR+ (y- y/)]} I , - Iz-zI ( I ICR + (y- yS)]} I z

- ~~ , X-i~XxI)2 -(Y-y~) -(y-y')R 1-, Iz-Y) -(y-yx4 tat OUVY- Lt (,-,, 'I - II 3. + (x , t (X--z''IZ i" Z

-(y-y') InE R+ Iz-z'!]IIL + (y-yy') in[R + Iz-z-I];I°} Ixt,.y/ (A20)

This result simplifies somewhat when it is noted that the following identity holds:

tan-'(-Q) = - tan-'(Q) (A21)

Then, when the factor I z - z' I is replaced by ±(z - z') depending on the limits of the z'

integration, it is found that:

, "I - IR + y-)]) 1z' + ,.- ,[ (x-x') 2 +(y-y')2 +(y-y')R Izu

l11(x,y,z) = - (~z- zS){Ii- lR+ (y -y ) }Z, + (x -x,)m *0 (xx)z-' J 'a,

-(y-yI) InCR + (z-z')]Iz. + (y-y') In[R - (z-z')I Iu]} Ix/,y, (A22)
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U , Further note that any term that does not involve all three coordinates x', y', and z' will, upon

evaluation at the limits of integration, be equal to zero. Consequently, the first term in eq. (A22)

Iis zero. That is:

(z-z') Ix',y,,z/ = 0 (A23)U
Using the identity:

In[R - (z- z')] Ix/ ,y1.z/ = - In[R + (zz')-] Ixy/,z' (A24)

U the validity of which depends on the fact that these logarithms are being evaluated at fixed

limits, I,(x,y,z) reduces to:

U 11~I(x,y,z) = - {(x-x') an-t[`A-)(.(y- zz,]+(z -z') I[ 3
"(XYZ)~ ~ ~ I(XXI tW (j-T-T+Z/z (z - zI) ln['R + (y -y)'

I -(y-y')In[R+(z-z')]} Ix,,y,,z, (A25)

I
Next, applying the identity:I

[tan-'(Q) + tan-'(Q-')] Ix,,I,z, = Z /, Ix'/,z' 0 (A26)

where:

U- Q<0

A-9I



and subsequently performing some straightforward manipulations to simplify the result, we find:

tan-' (3-104-0 ] ____ 1 I, /,Z = ta-' (y-y')(z-z')] 1 x./Z A 8

Consequently, the final result is obtained:

I~(x~y(z) = tan' [ (YY')(z)] - (y- y')In[R+(z-z')] - (z-z') tn[R+(y-y')]} 'x',Y'.z'

(A29a)

The integrals Iy(x,y,z) and Iz(x,y,z) can be obtained from the above expression for 11(x,y,z) by

cyclic permutations of the coordinate differences, i.e.:

(x -x') -4 (y-y)- (z -z') --- (x -XI)

yielding:

I~(~yz)= {(x-x') In[R+(z-z')] + (y-y') tan-' (z-z') In[R+(x-x')]} Ix/.y',Z'

(A29b)

and

Iz(x,y,z) = - {(x--x/)In[R+(y-y')] -(y-y') In[R+(x-x')] + (z-z')tanI ('[)(""?R ]j IX',y/.Z/

(A29c)
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l ". The magnetic scalar potential is therefore determined and is:

I 'O(x,y,z) = M.1.(x,y.z) + MyIy(x,y,z) + MzlA(x.y,z) (A30)

The elements of the fl matrix, listed in Table 1, are defined to be the nine terms contained in the

I three functions 12(x,yz), 1y(x,yz) and I,(x,yz). Defining the matrix elements in this way and

given the definition of the vector e, eq. (A30) can be put into the form of eq. (30) of the main

text.

I

I
I
I
I
I
I
I
I
I
I
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In terms of the magnetic scalar potential O(x,y,z) the magnetic field vector B(x,y,z),

generated by a single prism, is:

B(x,y,z) = - V0(x,y,z) (BI)

Using the form for the scalar potential given in eq. (A2) with I, given in the form of eq. (A 10),

while Iy and I1 are obtained from eq. (A 10) by cyclic permutation of the coordinate differences

as previously described in Appendix A, the magnetic induction B can be cast into the following

I form:

B(x,y,z) = M1.$. + MyJy + M"z. (B2)

U
where the vectors J,, JY, and f,. are defined as follows:

3JR(X'YZ) =J Z Vln[(y-y')+R]dz/ 1x',y' (B3a)

U f~X,,ZX=J Vin[(z-z')+ R]dx' Iy/,z/ Bb
I J,,(x,yZ) = E"v ,L~ z ' l,' ,z Bb

.Pz~x YUz V ln[(x -x/) +R-]dy/ Ix/,z/ (B3c)
JAI YZ YL

Since the vectors ,, Jy, and J, are all of the same mathematical form, it is sufficient to

evaluate just one of them, for instance J. , and then to obtain expressions for the other two

vectors, via cyclic permutation of the coordinate differences as was done in Appendix A.

I
I
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Additionally, since we are now dealing with vectors, a simultaneous cyclic permutation of the

unit vectors i , j and k is also necessary. That is:

(x - x') --) (y - y') -+ (z - z') -4 (x - x') 3
i -- --+ k --+ i

Now, the gradient of the natural logarithm in eq. (B3a) is easily computed, yielding:

j" l <-X'> <,-,,><,-,,> 1)$,(x,y,z) = J:L{[,(X-,')
2 + (Z-z') 2  [(X-X' R ]i)2 + I 2

ZLI
('I - Z) _______________

+ -(,-, y-z'(+z-Z,),]R ]kfdz/ (B4) I
Noticing that the first term of the integral will contribute nothing to the final result, when 3
evaluated at the limits, since it is independent of the y' coordinate and further noticing that the

same is true of the fourth term, ,9 (x,y,z) simplifies to: 1
I

_,i_(xyz) = if _,_-,')_-y') dz()i + - f- x-X')(Z-Z') dz' k x/ z/ (B5)

S{ [(I-,'x) + (y-yV]R fz' R U - +(z-zI)2]R k iZt

These final three integrals may be evaluated using Gradshteyn and Ryzhik (2.124, 2.261 and 5
2.284), yielding:

.fx(Xyz) -tan-'[ (y-y')(z-z') - In[R + (z-z)]j - - In[(y-y']k} Ix,,y,, (B6)

I
I
I



The last term can be simplified by multiplying the numerator and denominator of the logarithm

argument by the factor (y - y') + R. Then, the logarithm can be broken into the sum of two

terms, one of which will be independent of y' and therefore will contribute nothing when

evaluated at the limits. In this way, the following identity (and cyclic permutations thereof) is

obtained:

. -- in[ ] Ix,,y,.z, = - In[R + (y-y')] Ix,,y,,z, (B7)

Consequently, .,f'(x,y,z) finally reduces to:

.#,(xyz) = [tan-'[ (-Y)(Z-z]) i - in[R + (z - - In[R + (y - y/)] k} Ixt,y.z, (B8a)

Cyclic permutations then yield similar expressions for J,,(xy,z) and f,(x,y,z):

# JY(x,y,Z) = {- in[F + (z - z')] i + tan-(-')(-') ]j - n[R + (x - x1)] k IX/,,Z (B8b)I
andI

.(x~yz) = 1n[R+(y-y')]i - In[R+(x-x')]j + tan-'[ ('-"YJlk}• ] Ix,.y,.z, (B8c)

I The nine terms in the three eqs. (B8a), (B8b), and (B8c), each evaluated independently at

3 the prism limits, form the nine elements of the A matrix listed in Table 2. These matrix

elements, so defined, allow eq. (B2) to be written in the form of eq. (34) of the main text.

I
I
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I.
If the mass density, p , is specified to be uniform over the volume of integration V' and

i consequently is independent of r', then eq. (58) for the gravitational potential U(r) may be

written as:I
U(r)= -Gp d~ r(

Taking the volume of integration V', as in Appendix A, to be a rectangular prism, centered about

the point r. = (xO , yo , zo ) and having dimensions X, , X• , , and X., the above equation may be

written as:

U(x,y,z) = -Gp I(x, y,z) (C2)

where:

I JZLJYL" J '°'°
I(x,y,z) - R (C3)

RX, , Z f Z'UL XL fY x/ldz 0

I
and where the limits of integration are the same as those defined in Appendix A. The first

I integral over x' is found in most standard mathematics tables of integrals and yields the

following result:

l(x,y,z) = ff In[(x - x') + R]dy'dz' Ix' (C4)
fL YL

I
The integral over y' is of the same mathematical form as that of eq. (A 10), which, after some

I effort, was evaluated, yielding ly(x,y,z) in Appendix A. Consequently, we have:

I
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7,1

I
RX,.Y.• Z) i(X- XI)" ,.,R + (,-y,)]d,., + (,-y,)j ,.,[R + (x-x')]dz'

pefre ove y' .So wehv1mmdaey

+(y-Y) {-(x-x•) InCR + (z-z')] - (z-z') In[R + (x-x')] + (y-Y) -'[ (t-x'X-z') •],

Lf J: (z- z/) tn'[ (z,-XI(-Iz'R 1XI./ (M~) I

The final integral in eq. (C6a) is rather formidable. However, there is a little trick that can

be used. Note that the order of integration of eq. (03) is arbitrary because the limits of

integration are fixed. So instead of integrating first over x' and then over y' , as was just done,

we could have integrated first over y' and then over z', or alternatively, we could have integrated

first over x' and then over z!. The results of these alternative orders of integrations is obtained

from eq. (C6a) by cyclic permutation of the coordinate differences, yielding:

i
i
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I(X,Y, Z) = f. (x -XI) tan-[' (YP-R)]ZZ)dx/ + (y - y) I{(y- y')ta-'[(1)z1]
I"

-(z-z') In[R + (x-x')] - (x-x') ln[R + (z-z')]) I., + (z-z'){-(y-y') In[R + (x-x')]

-(x- x') In[R + (y-y/)] + (z- z') tan'[ (z-x)•-z) Y/ , z (C6b)

I• and

I x, y, Z) = (x - X) I-(z - z')In[R +(y - y')] - (y - y/)In[R +(z - z)] + (x - x')tan-'['YY),-z)]) y,~

- J~ (yy-') tanr[(-x')(- ]dy' + (z -z/) I{(z -z/) tan-] [ (x-")(y_')R

- (x-x') InCR + (y-y')] - (y-y') In[R + (x-x')]) ,, Ixi,z/ (C6c)I

The three forms of I(x,y,z) given in eqs. (C6a), (C6b), and (C6c) must be equivalent. Therefore,

by comparing these three equations, it may be inferred that:

i;I
Ixx)a- flul(Izl d' I j,j, r~-/I~-/ tan-y'[ )(z-_z')1

E x-x' dxxlR Iy~,'=- 1 X 1 x (X-X')RJ

-(y--y) In[R + (z-z')] - (z-z')InR + (y-y')])) Ix/,Yi,z• (C7)

I
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Cyclic permutations of this equation are also valid. Thus, when eq. (C7) and its permutations

with respect to the coordinate differences are inserted into equations (C6a), (C6b), and (C6c), it

is found that the gravitational potential of a rectangular prism takes the following final form: I

I

U(x~y,z) = -G XX)( - i ta-[ (Y-Y')(z-z')] - (yy) In[R + (z-z')J - (z-z') In[R + Iyyl]
+ ~ ~(y y' -(XI) In [R + (z- z1)] + (y- y') tanf[O-x')(z)]- (z -z1) In [R + (x -x')]}

+(z-z')j-(x-x') in[R+ (y-y')] - (y-y/) inCR + (x-x')] + (z]- Z/) tan-' (x-(')(Y-Y) xt,y/, II

(C8)

The elements of the r matrix listed in Table 4 are defined to be the nine geometric terms I
contained in eq. (C8). Defining the matrix elements in this way allows eq. (C8) to be written in 3
the compact form of eq. (74) of the main text.

I

II

I
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3 "The gravitational potential generated by a rectangular prism with a uniform mass density p is

of the form:

U(x,y,z) = - GpI(x,y,z) (D1)

I where, as in Appendix C, we have:

!z
I(x, y, z) = f:U fY: f:: d' (D2)

I YL XL

and where the limits of integration are the same as those defined in Appendix A.

The gravitational acceleration vector, g, is the negative gradient of the potential, so that:I
g(x,y,z) = - VU(x,y,z) (D3)

So if the x' integration in eq. (D2) is performed first, then the gravitational acceleration takes the

following form:I
g(x,y,z) = - fp V In[R + (x-x1)]dy dzt (D4a)

EL YL

I On the other hand, since the limits of integration are fixed, the y' integration could have been

performed first, giving:

g(xy,z) = - Gp V In[R + (y-y')] dx'dz' ly, (D4b)
zL XL

I
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Another possibility is to perform the z! integration first, which then yields:

g(zuy~z) = - Op V In[R + (z-zJ)]dx'dy/ I, (D4c)Ox. . Z) 6P YL XL

Th'e last three equations are just cyclic permutations with respect to the coordinate differences

of the same basic mathematical form. Furthermore, note that the y' integration of eq. (D4a) is

the same as the one previously encountered in eq. (B3c), while the z' integration in eq. (D4b) is

the same as that already encountered in eq. (B3a). Likewise, the x' integration in eq. (D4c) is

the same as that previously encountered in eq. (B3b). The results of these three integrations are

given in eqs. (B8a), (B8b), and (B8c) of Appendix B, so that eqs. (D4a), (D4b), and (D4c) can

immediately be written, respectively, as:

g(x,y,z) = - Gp J I-. lin,[R+-(y-')ji - In,[R+-(x,-'),)j + tan-' ["-X"-"_ ]"k"dz ' (D5a)

g(xy,z) = - GP f {+tan-' [ " - in[R+(z -z,)]j - In[R+,-(y-,y,)] ,' k ,,., (D5b)

g(x, y, z) = - Op Yu I- In [R + (z - z)J i + tan-] x-';-I]j -In[R +(x -x')] kJ dy' I~.'(D5c)

These three expressions for the gravitational acceleration vector must be equal. Therefore, by

comparing like components of these expressions, we find the following set of identities:

f dt[-(YY%(zz)]xi IY1,,, = U- In[R+(z-z')]dy/ , - InR+(y-y')]dz' lI y

(D6)
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I .
I • Cyclic permutations of these relations with respect to the coordinate differences are also valid.

The reason for going through the above exercise is that the integrations involving the

arc-tangents are very difficult to evaluate, unless they are cast into some other equivalent forms,

which has now been done.

Picking any one of the three forms of g(x,y,z), for instance that of eq. (D5c), and using one

I of the identities in eq. (D6) for the arc-tangent, we may write the gravitational acceleration

vector in the following form:

g(x,y,z) = Gp In[R + (z-z')]dy' I,,.z, i + In[R + (x-x')]dz'•[,,.y, j
YL

"" Ln[R + (x-x/)]dy' 1,,/., k (D7)

All of the integrals in this equation are of the same basic mathematical form as eq. (A10) of

Appendix A. Consequently, when evaluated, the above integrations will yield forms of the type

given in eqs. (A30a), (A30b), and (A30c), the particular form depending on which permutation

of the coordinate differences is involved. In this way, the following result is obtained:

g(x,yz) = gxi + gyj + gzk (D8)

where:

g(,,y,-) = Gp[+(x-x ')tan-'[ (yxY'),-,')] - (y-')In[R + (z-z')] - (z-z')In[R + (Y-Y)]J1x'.yIz'

gy(x,y,z) = Gp [- (x-x'In[R + (z-z')] + (y-y/)tan-' ([(x ')] _ (z-z')In[R + (x-xI)]} ix/,yt,zy
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&,,(x, y.z) =p G{(x-x')In[R + (y-y')] - (y-y')In[R + (x-x')] + (z-z')tan-' [ R ]IX1,

I

Using the elements of the fl matrix derived in Appendix A and listed in Table 1, the vector 3
components of the gravitational acceleration given in eq. (D8) can be cast into the form of eq.

(78) of the main text. U

IDI!
I!
Ii ,
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C
C
C SUBROUTINE MAGREP (MAGNETIC FIELD DUE TO A RECTANGULAR PRISM)
C
C

c
c
C
C PROGRAMMED BY: JOHN M. QUINN AND DONALD L. SHIEL 8/8/86
C NAVAL OCEANOGRAPHIC OFFICE
C STENNIS SPACE CENTER, MS 39522-5001
C
C

C
C
C PURPOSE: THIS ROUTINE COMPUTES THE MAGNETIC FIELD COMPONENTS DUE
C TO A RECTANGULAR PRISM LOCATED AT (XB,YB,ZB) RELATIVE TO
C SOME ORIGIN LOCATED AT THE OCEAN SURFACE AT THE LOWER
C LEFT-HAND CORNER OF THE SURVEY AREA. THE PRISM HAS
C DIMENSIONS (LAMX,LAMY,LAMZ). ITS ORIENTATION IS
C DESCRIBED BY EULER ANGLES (ALPHA,BETA,GAMA)
C CORRESPONDING TO YAW, PITCH, AND ROLL ACCORDING TO THE
C 3-2-1 CONVENTION, RELATIVE TO THE USUAL GEODETIC
C COORDINATES FOR WHICH X=NORTH, Y=EAST, AND Z=DOWN. THE
C PRISM HAS UNIFORM MAGNETIZATION (MX,MY,MZ) WITH RESPECT
C TO THE PRISM-FIXED COORDINATES.
C
C

c
c
C REFERENCE: A UNIFIED APPROACH TO GEOPOTENTIAL FIELD MODELING;
C BY: JOHN M. QUINN AND DONALD L. SHIEL; U. S. NAVAL
C OCEANOGRAPHIC OFFICE TECHNICAL REPORT No. 308 (1993)
C

C

C
C

C PARAMETER DESCRIPTIONS:
C
C X - INERTIAL X (NORTH) COORDINATE OF OBSERVATION POINT (KM)
C Y - INERTIAL Y (EAST) COORDINATE OF OBSERVATION POINT (KM)
C Z - INERTIAL Z (DOWN) COORDINATE OF OBSERVATION POINT (KM)
C XB - INERTIAL X (NORTH) COORDINATE OF CENTER OF PRISM (KM)
C YB - INERTIAL Y (EAST) COORDINATE OF CENTER OF PRISM (KM)
C ZB - INERTIAL Z (DOWN) COORDINATE OF CENTER OF PRISM (KM)
C XP - PRISM FIXED X-AXIS COORD. OF OBSERVATION POINT (KM)
C YP - PRISM FIXED Y-AXIS COORD. OF OBSERVATION POINT (KM)
C ZP - PRISM FIXED Z-AXIS COORD. OF OBSERVATION POINT (KM)
C LAMX - DIMENSION OF PRISM ALONG X-AXIS (KM)
C LAMY - DIMENSION OF PRISM ALONG Y-AXIS (KM)
C LAMZ - DIMENSION OF PRISM ALONG Z-AXIS (KM)
C ALPHA - YAW ROTATION ANGLE ABOUT Z-XIS OF PRISM (DEG.)
C BETA - PITCH ROTATION ANGLE ABOUT Y-AXIS OF PRISM (DEG.)
C GAMA - ROLL ROTATION ANGLE ABOUT X-AXIS OF PRISM (DEG.)
C MX - X-COMPONENT OF MAGNETIZATION OF PRISM (NT)
C MY - Y-COMPONENT OF MAGNETIZATION OF PRISM (NT)
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c MZ - Z-COMPONENT OF MAGNETIZATION OF PRISM (NT)

C ROT - ROTATION MATRIX FROM INERTIAL TO PRISM FIXED COORDS.

C ROTI - INVERSE ROT. MATRIX -- PRISM-FIXED TO INERTIAL COORDS.

C V - GEOMAGNETIC POTENTIAL IN INERTIAL COORDINATES (NT-KM)
C BX - INERTIAL X-COMPONENT OF OBSERVED MAGNETIC FIELD (NT)
C BY - INERTIAL Y-C0 )ONENT OF OBSERVED MAGNETIC FIELD (NT)
C BZ - INERTIAL Z-COMPONENT OF OBSERVED MAGNETIC FIELD (NT)
C GB - INERTIAL MAGNETIC FIELD GRADIENT MATRIX (NT/KM)
C GB(1,1)=DBX/DX
C GB(1,2)=DBX/DY
C GB(1,3)=DBX/DZ
C GB(2,1)=DBY/DX
C GB(2,2)=DBY/DY
C GB(2,3)=DBY/DZ
C GB(3,1)=DBZ/DX
C GB(3,2)=DBZ/DY
C GB(3,3)=DBZ/DZ
C OMEGA - MAGNETIC POTENTIAL TRANSFORMATION MATRIX (KM)
C LAMDA - MAGNETIC FIELD TRANSFORMATION MATRIX (DIMENSIONLESS)
C DLAMD - GRADIENT OF LAMDA MATRIX (KM**(-1))
C
C

C
C
c NOTE: THE PRISM IS ROTATED THROUGH EULER ANGLES ALPHA,
C BETA AND GAMA. THESE ANGLES DEFINE A NET
C ROTATION R(GAMA,BETA,ALPHA). THESE ROTATION ANGLES
C ARE DEFINED IN ACCORDANCE WITH THE 3-2-1 CONVENTION
C THAT IS IN GENERAL USE BY BRITISH AND AMERICAN
C AERODYNAMICISTS. IN THIS CONVENTION THE ANGLE ALPHA
C CORRESPONDS TO A COUNTERCLOCKWISE ROTATION ABOUT THE
C POSITIVE Z-AXIS, THE ANGLE BETA CORRESPONDS TO A
C CLOCKWISE ROTATION ABOUT THE NEW Y-AXIS, AND THE ANGLE
C GAMMA CORRESPONDS TO A COUNTERCLOCKWISE ROTATION ABOUT THE
C FINAL X AXIS. THE CONSECUTIVE ROTATIONS MUST BE PERFORMED
C IN THE ABOVE ORDER. THE INVERSE ROTATION MUST BE
C PERFORMED IN THE REVERSE ORDER.
C
C THE INERTIAL COORDINATE SYSTEM IS REFERENCED TO AN
C ORIGIN AT THE LOWER LEFT-HAND CORNER OF THE SURVEY AREA.
C
C THE PRISM-FIXED COORDINATE SYSTEM IS REFERENCED TO AN
C ORIGIN THAT IS AT THE CENTER OF THE PRISM. THE PRISM
C FIXED COORDINATES ROTATE WITH THE PRISM RELATIVE TO
C THE INERTIAL COORDINATES.
C

Cc

SUBROUTINE MAGREP(X,Y,Z,V,BX,BY,BZ,GB)
C
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION MX,MY,MZ,LAMX,LAMY,LAMZ,LAMDA(3,3)
DIMENSION OMEGA(3,3),DLAMD(3,3,3),GB(3,3),GBP(3,3)
DIMENSION ROT(3,3),ROTI(3,3)
COMMON /MAGBLK/ MX,MY,MZ,LAMX,LAMY,LAMZ,XB,YB,ZB,ALPHA,BETA,GAMA

C
C
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P1=3. 141593D0I. ALPH=ALPHA*PI/ 180. DO
BET=BETA*PI/ 180. DO

3 ~GAM=GAMA*PI/ 180. DO
C COMPUTE FORWARD AND INVERSE ROTATION MATRICES
C

ROT(1, 1)=+DCOS(ALPH) *DCOS(BET)
ROT (1, 2)=+DSIN (ALPH) *DCOS (BET)
ROT(1, 3)=-DSIN(BET)
ROT (2,1) =-DSIN (ALPH) *DCOS (GAM) +DCOS (ALPH) *DSIN (BET) *DSIN (GAM)
ROT(2,2)=+DCOS(ALPH)*DCOS(GAM)+DSIN(ALPH) *DSIN(BET) *DSIN(GAM)I ~ROT(2, 3)=+DCOS(BET) *DSIN(GAM)
ROT (311) =+DSIN (ALPH) *DSIN (GAM) +DCOS (ALPH) *DSIN (BET) *DCOS (GAM)
ROT(3,2)=-DCOS(ALPH) *DSIN(GAM)+DSIN(ALPH) *DSIN(BET)*DCOS(GAM)3 ~ROT(3,3)=+DCOS(BET) *DCOS(GAM)

ROTI(1, 1)=+DCOS(ALPH) *DCO.%,BET)
ROTI(1, 2)-+DCOS(ALPH) *DSIN(BET) *DSIN(GAM) -DSIN(ALPH) *DCOS(GAM)
ROTI(1,3)=+DCOS(ALPH)*DSlIN(BET) *DCOS(GAM)+DSIN(ALPH)*DSIN(GAM)
ROTI (2,1) =+DSIN (ALPH) *DCOS (BET)
ROTI(2,2)=+DSIN(ALPH) *DSIN(BET) *DSIN(GAM) +DCOS(ALPH) *DCOS(GAJ4)
ROTI(2,3)-+DSIN(ALPH) *DSIN(BET)*DCOS(GAM)-DCOS('-,TPH)*DSIN(GAM)
ROTI (3,1) =-DSIN (BET)
ROTI (3,2) =+DCOS (BET) *DSIN (GAM)
ROTI (3,3) =+DCOS (BET) *DCOS (GAM)

CIC ROTATE FROM INERTIAL TO PRISM-FIXED COORDINATES
C

XP=-ROT(1,1)*(X-XB)+ROT(1,2)*(Y-YB)+ROT(1,3)*(Z-ZB)
YP=ROT(2,1)*(X-XB)+ROT(2,2)*(Y-YB)+ROT(2,3)*(Z-ZB)I ZP=ROT(3,1)*(X-XB)+ROT(3,2)*(Y-YB)+ROT(3,3)*(Z-ZB)

C
C COMPUTE THE GEOMAGNETIC POTENTIAL, THE VECTOR FIELD AND THE3C GRADIENT TENSOR FIELD IN THE PRISM FIXED COORDIANTES

VP=0. ODO
BXP=O. ODO
BYP=O. ODOIZ-.D

I ~GBP ( 1, 1) =0 . ODO
GBP(12, )=O.ODO
GBP(2, 2)=O. ODO
GBP (2 ,3) =0.ODOI ~GBP(3, 1)=O.ODO
GBP(23, )=O.ODO

GBP (3 ,3) =0.ODOI DO 30 JB=1,2
IF (JB .EQ. 1) XL=+LAMX/2.ODO
IF (JB .EQ. 2) XL=-LAMX/2.ODO
IF (JB .EQ. 1) SX=+1.ODOIFUBE.2 X-.D
IF(J= .Q.2)SX-1OD
DO 20 KB=1,2

IF(KB .EQ. 1) YL=+LAMY/2.ODO
IF (KB .EQ. 2) YL=-LAMY/2.ODO
IF (KB .EQ. 1) SY=+1.ODO

U IF (KB .EQ. 2) SY=-1.ODO
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YD-YP-YL
DO 10 LB=1, 2
IF (LB .EQ. 1) ZL=+LAMZ/2.ODO
IF (LB .EQ. 2) ZL=--LAMZ/2.ODO
IF (LB .EQ. 1) SZ=+1.ODO
IF (LB .EQ. 2) SZ=-1.ODO
ZD-ZP-ZL
S-SX*SY*SZ
R2-XD**2+YD**2+ZD**2
R-DSQRT (R2)
IF (R+ZD -EQ. O.ODO) PRINT *,'A'

IF ((R-YD)/(R+YD) .EQ. O.ODO) PRINT *,'B'

IF ((R-XD)/(R+XD) .EQ. O.ODO) PRINT *,'C'

IF (R+XD .EQ. O.ODO) PRINT *, ' D'
LAMDA(l, 1)-+S*DATAN(YD*ZD/ (XD*R))
LAMDA (1, 2) --S*DLOG (ABS (R+ZD) )
LAMDA (1,3) --S*DLOG (ABSS(R+YD))
LAMDA (2,1) =LAMDA (1,2)
LAMDA(2,2)-+S*DATAN(XD*ZD/ (YD*R))
LAMDA(2, 3)-=-S*DLOG (ABS (R+XD))
LAMDA (3, 1) -LAMDA (1, 3)
LAMDA (3,2) -LAMDA (2,3)
LAMDA(3,3)-+S*DATAN(XD*YD/ (ZD*R))

C
OMEGA(l, 1)-XD*LAMDA(l, 1)
OMEGA (1, 2) -YD*LAMDA (1, 2)
OMEGA(1, 3)-ZD*LAMDA(1,3)
OMEGA(2, 1)=XD*LAMDA(2,1)
OMEGA(2,2)-YD*LAMDA(2, 2)
OMEGA(2, 3)-ZD*LAMDA(2, 3)
OMEGA(3, l)-XD*LAMDA(3,1)
OMEGA(3,2)-YD*LAMDA(3, 2)
OMEGA(3, 3)-ZD*LAMDA(3, 3)

C
DLAMD(1,1,2)=-(S/R)*(XD/(R+ZD))
DLAMD(1, 1,3) =-(S/R) *(XD/ (R+YD))
DLAMD(1,2, 1)=DLAMD(1, 1,2)
DLAMD(1,2,2)=-(S/R) *(YD/ (R+ZD))
DLAMD(1, 2,3)=-(S/R)
DLAMD (1, 3, 1)=DLAMD (1, 1, 3)
DLAMD(1,3 ,2)=DLAMD(1, 2,3)
DLAMD(1,3,3)=-(S/R)*(ZD/(R+YD))
DLAMD (2, 1, 1) =DLAMD (1, 1, 2)
DLAMD (2, 1,2) =DLAMD (1,2,2)
DLAMD (2, 1, 3)=DLAMD (1, 2, 3)
DLAMD (2, 2, 1)=DLA4D (1, 2 ,2)
DLAi4D(2,2,3)=-(S/R)*(YD/(R+XD))
DLAMD (2, 3,1) =DLAMD (1, 2 ,3)
DLAMD(2,3,2)=DLAMD(2,2, 3)
DLAMD(2,3,3)=-(S/R)*(ZD/(R+XD))
DLA.MD (3, 1,1) =DLAMD (1, 1, 3)
DLAMD(3, 1,2)=DLAMD(1,2,3)
DLAMD(3, 1,3)=DLAMD(1,3, 3)
DLAMD (3, 2, 1)=DLAMD (1, 2, 3)
DLAMD(3,2, 2)=DLAMD(2, 2,3)
DLAMD(3,2,3)=DLAMD(2, 3,3)
DLAMD(3,3,1)=DLAMD(1,3, 3)
DLAMD(3,3,2)=DLAMD(2, 3,3)
DLAMD(1, 1, 1)=-DLAMD(1, 3,3) -DLAMD(1, 2,2)
DLAMD(2,2,2)=-DLAMD(2,3,3) -DLAMD(1, 1,2)
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I ~DLAMD(3,3,3)=-DLAMD(2,2,3) -DLAMD(1, 1,3)
VP=VP- ((OMEGA (1, 1) +OMEGA (1, 2) +OMEGA( 1, 3) )*MX

* +(OMEGA(2,1)+OMEGA(2,2)+OMEGA(2,3) )*MY
* +(OMEGA(3,1)+OMEGA(3,2)+OMEGA(3,3))*MZ)

BXP=BXP+LAMDA(1, 1) *MX+LAMDA(1, 2) *MY+LAMDA(1, 3) *MZ
BYP-BYP+LAMDA(2, 1) *MX+LAMDA(2, 2) *MY+ ADA(2, 3) *MZ

BZP=BZP+LAMDA(3, 1) *MX+LAMDA(3, 2) *MY+LADA(3,3) *MZ

GBP(1, 1)=GBP(1, 1)+DLAMD(1, 1,1) *MX+DLAJ(D(1,2, 1) *MY+DL)J4D(1, 3,1) *MZ
GBP(1,2)=GBP(1,2)+DLAMD(1, 1,2) *MX+DLAMD(1,2,2) *MY+DLAMD(1, 3,2) *MZ
GBP(1, 3)=GBP(1, 3)+DLAMD(1, 1,3) *MX+DLAMD(1, 2,3) *MY+DLAMD(1,3, 3) *MZ
GBP(2,2)=GBP(2,2) +DLAMD(2, 1,2) *MX+DLAMD(2, 2,2) *MY+DLAMD(2, 3,2) *MZu ~ ~GBP(2, 3)=GBP(2, 3)+DLAMD(2,] , 3) *MX+DLAMD(2, 2,3) *MY+DLAMD(2, 3,3) *MZ

CGBP(3,3)=GBP(3,3)+DLAMD(3,1,3) *MX+DLAMD(3,2,3)*MY+DLAMD(3,3,3) *MZ

10 CONTINUE
20 CONTINUEI C30 CONTINUE

GBP (2, 1) =GBP (1, 2)
GBP(3, 1)=GBP(1, 3)
GBP (3 ,2) =GBP (2, 3)

C ROTATE M4AGNETIC FIELD COMPONENTS FROM PRISM FIXED TO

C INETIALCOORDINATES

C

I ~ ~BY=ROTI (2,1) *BXP+ROTI (2,2) *BYP+ROTI (2,3) *BZP
BZ=ROTI (3,1) *BXP+ROTI (3,2) *BYP+ROTI (3,3) *BZP

GB(l,1)=ROTI(1,1)*GBP(1,1)+ROTI(1,2)*GBP(2,1).ROTI(1,3)*GeP(3,
1 )

GB(1,2)=ROTI(1, 1) *GBP(1,2)+ROTI(1,2) *GBP(2,2)+ROTI(1,3) *GBP(3,2)
GB(1, 3)=ROTI(1, 1) *GBP(1, 3) +ROTI(1,2) *GBP(2, 3)+ROTI(1, 3) *GBP(3, 3)
GB(2,1frROTI(2,1)*GBP(1,l)+ROTI(2,2)*GBP(2,1)+ROTI(2,3)*GBP(

3 ,1)
GB(2,2)=ROTI(2, 1) *GBP(1, 2)+ROTI(2, 2) *GBP(2, 2) +ROTI(2, 3) *GBP(3 ,2)
GB(2,3)=ROTI(2,1) *GBP(1,3)+ROTI(2,2)*GBP(2,3)+ROTI(2,3)*GBP(3,3)
GB(3, 1)=ROTI (3,1) *GBP(1, 1)+ROTI (3,2) *GBP(2,1) +ROTI (3,3) *GBP(3, 1)
GB(3,2)=ROTI(3,1)*GBP(1,2)+ROTI(3,2)*GBP(2,2)+ROTI(3,3)*GBP(3,2)

CGB(3,3)=ROTI(3,1) *GBP(1,3)+ROTI(3,2) *GBP(2,3)+ROTI(3, 3) *GBP(3, 3)

RETURN
* END

E-7



U . |dI

3- APPENDIX F

U
I
I

U THE GRVREP FORTRAN ALGORITHM

I

I
I
U
I

I-

iF-I



IC
C
C SUBROUTINE GRVREP (GRAVITY FIELD DUE TO A RECTANGULAR PRISM)

rIC
C

cc PROGRAMMED BY: JOHN M. QUINN AND DONALD L. SHIEL 8/8/86
C NAVAL OCEANOGRAPHIC OFFICE
C STENNIS SPACE CENTER, MS 39522-5001
C
C

CI C
C PURPOSE: THIS ROUTINE COMPUTES THE GRAVITY FIELD COMPONENTS DUE
C TO A RECTANGULAR PRISM LOCATED AT (XB,YB,ZB) RELATIVE TO
C SOME ORIGIN LOCATED AT THE OCEAN SURFACE AT THE LOWER
C LEFT-HAND CORNER OF THE SURVEY AREA. THE PRISM HAS
C DIMENSIONS (LAMX,LAMYLAMZ). ITS ORIENTATION IS
C DESCRIBED BY EULER ANGLES (ALPHA,BETA,GAMA)
C CORRESPONDING TO YAW, PITCH, AND ROLL ACCORDING TO THE
C 3-2-1 CONVENTION, RELATIVE TO THE USUAL GEODETIC
C COORDINATES FOR WHICH X=NORTH, Y=EAST, AND Z=DOWN. THE
C PRISM HAS UNIFORM DENSITY RHO.
CIc
C

C REFERENCE: A UNIFIED APPROACH TO GEOPOTENTIAL FIELD MODELING;
C BY: JOHN M. QUINN AND DONALD L. SHIEL; NAVAL
C OCEANOGRAPHIC OFFICE TECHNICAL REPORT 1 309 (1993)
C
C

C

C PARAMETER DESCRIPTIONS:
C
C X - INERTIAL X (NORTH) COORDINATE OF OBSERVATION POINT (KM)
C Y - INERTIAL Y (EAST) COORDINATE OF OBSERVATION POINT (KM)
C Z - INERTIAL Z (DOWN) COORDINATE OF OBSERVATION POINT (KM)
C XB - INERTIAL X (NORTH) COORDINATE OF CENTER OF PRISM (KM)
C YB - INERTIAL Y (EAST) COORDINATE OF CENTER OF PRISM (KM)
C ZB - INERTIAL Z (DOWN) COORDINATE OF CENTER OF PRISM (KM)
C XP - PRISM FIXED X-AXIS COORD. OF OBSERVATION POINT (KM)
C YP - PRISM FIXED Y-AXIS COORD. OF OBSERVATION POINT (KM)
C ZP - PRISM FIXED Z-AXIS COORD. OF OBSERVATION POINT (KM)
C LAMX - DIMENSION OF PRISM ALONG X-AXIS (KM)
C LAMY - DIMENSION OF PRISM ALONG Y-AXIS (KM)
C LAMZ - DIMENSION OF PRISM ALONG Z-AXIS (KM)
C ALPHA - YAW ROTATION ANGLE ABOUT Z-XIS OF PRISM (DEG.)
C BETA - PITCH ROTATION ANGLE ABOUT Y-AXIS OF PRISM (DEG.)
C GAMA - ROLL ROTATION ANGLE ABOUT X-AXIS OF PRISM (DEG.)
C G - NEWTON'S GRAVITATIONAL CONSTANT (KM**3/GM-SEC**2)
C RHO - DENSITY OF PRISM (GM/KM**3)
C ROT - ROTATION MATRIX FROM INERTIAL TO PRISM FIXED COORDS.
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C ROTI - INVERSE ROT. MATRIX -- PRISM-FIXED TO INERTIAL COORDS. 3
C V - GRAVITATY POTENTIAL IN INERTIAL COORDINATES (KM**2/SEC**2)
C GX - INERTIAL X-COMPONENT OF OBSERVED MAGNETIC FIELD ((KM/SEC**2)
C GY - INERTIAL Y-COMPONENT OF OBSERVED MAGNETIC FIELD (KM/SEC**2)
C GZ - INERTIAL Z-COMPONENT OF OBSERVED MAGNETIC FIELD (KM/SEC**2)
C GG - INERTIAL GRAVITY FIELD GRADIENT MATRIX (SEC**(-2))
C GG(I,1)=DGX/DX
C GG(1,2)=DGX/DY
C GG(1,3)=DGX/DZ
C GG(2,1)=DGY/DX
C GG(2,2)=DGY/DY
C GG(2,3)=DGY/DZ

C GG(3,1)=DGZ/DX
C GG(3,2)=DGZ/DY

C GG(3,3)=DGZ/DZ
C GAMMA - GRAVITY POTENTIAL TRANSFORMATION MATRIX (KM**2)
C OMEGA - GRAVITY FIELD TRANSFORMATION MATRIX (KM) I
C LAMDA - GRAVITY GRADIENT TRANSFORMATION MATRIX (DIMENSIONLESS)

C
c
c
C

C NOTE: THE PRISM IS ROTATED THROUGH EULER ANGLES ALPHA,
C BETA AND GAMA. THESE ANGLES DEFINE A NET
C ROTATION R(GAMA,BETA,ALPHA). THESE ROTATION ANGLES
C ARE DEFINED IN ACCORDANCE WITH THE 3-2-1 CONVENTION
C THAT IS IN GENERAL USE BY BRITISH AND AMERICAN g
C AERODYNAMICISTS. IN THIS CONVENTION THE ANGLE ALPHA
C CORRESPONDS TO A COUNTERCLOCKWISE ROTATION ABOUT THE
C POSITIVE Z-AXIS, THE ANGLE BETA CORRESPONDS TO A
C CLOCKWISE ROTATION ABOUT THE NEW Y-AXIS, AND THE ANGLE
C GAMMA CORRESPONDS TO A COUNTERCLOCKWISE ROTATION ABOUT THE
C FINAL X AXIS. THE CONSECUTIVE ROTATIONS MUST BE PERFORMED
C IN THE ABOVE ORDER. THE INVERSE ROTATION MUST BE
C PERFORMED IN THE REVERSE ORDER.
C
C THE INERTIAL COORDINATE SYSTEM IS REFERENCED TO AN
C ORIGIN AT THE LOWER LEFT-HAND CORNER OF THE SURVEY AREA.cIC
C THE PRISM-FIXED COORDINATE SYSTEM IS REFERENCED TO AN
C ORIGIN THAT IS AT THE CENTER OF THE PRISM. THE PRISM
C FIXED COORDINATES ROTATE WITH THE PRISM RELATIVE TO
C THE INERTIAL COORDINATES.

C

Cc

SUBROUTINE GRVREP(X,Y,Z,V,GX,GY,GZ,GG)
C
C

IMPLICIT DOUBLE PRECISION (A-H,O-Z)
DOUBLE PRECISION RHO,LAMX,LAMY,LAMZ,LAMDA(3,3)
DIMENSION OMEGA(3,3),GAMMA(3,3),GG(3,3),GGP(3,3)
DIMENSION ROT(3,3),ROTI(3,3)
COMMON /GRVBLK/ RHO,LAMX,LAMY,LAMZ,XBYB,ZB,ALPHA,BETA,GAMA

C
C

PI=3.141593D0
ALPH=ALPHA*PI/180.DO
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BET-BETA*PI/ 180. DO3. GAM-GAMA*PI/180. DO
G-6. 6720D-23

C
C COMPUTE FORWARD AND INVERSE ROTATION MATRICES

* C
ROT (1,1) =+DCOS (ALPH) *DCOS (BET)
ROT(1,2)=+DSIN(ALPH) *DCOS(BET)1 ~ROT(1, 3)=-DSIN (BET)
ROT(2, 1) =-DSIN(ALPH) *DCOS (GA!) +DCOS (ALPH) *DSIN (BET) *DSIN (GAM)
ROT(2,2)=+DCOS(ALPH) *DCOS(GA4) +DSIN(ALPH) *DSIN (BET) *DSIN(GAJ4)
ROT(2, 3)=+DCOS(BET) *DSIN(GAM)
ROT(3,1)=+DSIN(ALPH)*DSIN(GAI4)+DCOS(ALPH)*DSIN(BET)*DCOS(GAM)
ROT(3,2)--DCOS(ALPH) *DSIN(GAM)+DSIN(ALPH) *DSIN(BET) *DCOS(GAM)

ROT(3, 3)=+DCOS(BET) *DCOS(GAM)

U ~ ~ROTI (1,1) =+DCOS (ALPHA) *DCOS (BET)
ROTI (1,2) =+DCOS (ALPH) *DSIN (BET) *DSIN (GA!) -DSIN (ALPH) *DCOS (GA?!)
ROTI (1,3) =+DCOS (ALPH) *DSIN (BET) *DCOS (GA!) +DSIN (ALPH) *DSIN (GA?!)
ROTI (2,1) =+DSIN (ALPH) *DCOS (BET)
ROTI (2,2) =+DSIN (ALPH) *DSIN (BET) *DSIN (GA!) +DCOS (ALPH) *DCOS (GA?!)
ROTI (2,3) =+DSIN (ALPH) *DSIN (BET) *DCOS (GA!) -DCOS (ALPH) *DSIN (GA?!)
ROTI (3,1) =-DSIN(BET)
ROTI(3,2)=+DCOS(BET) *DSIN(GAM)
ROTI(3,3)=+DCOS(BET) *DCOS(GAJ4)

C ROTATE FROM INERTIAL TO PRISM-FIXED COORDINATESI C
XPmROT(1,1)*(X-XB)+ROT(1,2)*(Y-YB)+ROT(1,3)*(Z-ZB)
YPmROT(2,1)*(X-XB)+ROT(2,2)*(Y-YB)+ROT(2,3)*(Z-ZB)

ZP=ROT(3,1)*(X-XB)+ROT(3,2)*(Y-YB)+ROT(3,3)*(Z-ZB)

C COMPUTE THE GRAVITY POTENTIAL, THE VECTOR FIELD AND THE
C GRADIENT TENSOR FIELD IN THE PRISM FIXED COORDIANTESU VP=0.OD

GXP-0.ODO
GYP- . ODOI GZP=0.ODO
GGP (1, 1) 0 DO
GGP(1,2)u0.ODO
GGP (1, 3)=0. ODOI ~GGP(2, 1)O. ODO
GGP (2 ,2) . ODO
GGP (2 ,3) =0.ODO
GGP (3, 1) =0. ODO

DO 30 JB-1,2
IF (JB .EQ. 1) XL=+LAMX/2.ODO
IF (JB .EQ. 2) XL=-LAI4X/2..ODO
IF (JB .EQ. 1) SX=+1.ODO
IF (JB .EQ. 2) SX=-1.ODO
XD-XP-XL
DO 20 KB-1,2

IF (KB .EQ. 1) YL=-+LAMY/2.ODO
IF (KB .EQ. 2) YL=-LAMY/2.ODOU IF (KB .EQ. 1) SY=+l.ODO
IF (KB .EQ. 2) SY=-l.ODO
YD-YP-YL
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DO 10 LB-1, 2
IF (LB .EQ. 1) ZL-4-LAMZ/2.ODO
IF (LB .EQ. 2) ZL--LAMZ/2.ODO
IF (LB .EQ. 1) SZ-+l.000
IF (LB .EQ. 2) SZ-1l.ODO
ZD-ZP-ZL
S-SX*SY*sz
R2-XD**2+YD**2+ZD**2
R-DSQRT (R2)
IF (R+ZD .EQ. O.ODO) PRINT *,'A'

IF ((R-YD)/(R+YD) .EQ. O.ODO) PRINT *,'B'

IF ((R-XD)/(R+XD) .EQ. O.ODO) PRINT *,~C'
IF (R+XD .EQ. O.ODO) PRINT *, I '
LAMDA(l, 1)i+S*DATAN(YD*ZD/ (XD*R))
LANDA (1,2)--S*DLOG (ABS (R+ZD))
LAMDA(1,3)m-S*DLOG(ABS(R+YD))
LANDA (2, 1) -LANDA (1,2)
LAMDA(2,2)=+DATAN(XD*ZD/(YD*R))
LANDA(2,3)--S*DLOG(ABS(R+XD))
LA4DA (3, 1) =LAMDA (1, 3)
LAMDA (3, 2) -LAZ4DA (2, 3)
LANDA(3,3)=+S*DATAN(XD*YD/ (ZD*R))

C
OMEGA(l, 1)=XD*LAMDA(l, 1)
OMEGA (1, 2)-YD*LAMDA (1, 2)
OMEGA(1,3)-ZD*LAMDA(1, 3)
ONEGA(2, 1)=XD*LAMDA(2, 1)
OMEGA(2,2)-YD*LAMDA(2, 2)
ONEGA(2, 3)=ZD*LAMDA(2, 3)
OMEGA(3, 1)-XD*LAMDA(3, 1)
OMEGA(3,2)=YD*LAMDA(3,2)
OMEGA(3,3)-ZD*LAMDA(3,3)

C
GAI(A(1, 1)-XD*OMEGA(l, 1)
GAMMA (1, 2)-YD*OMEGA (1, 2)
GAMM&(1,3)=ZD*OMEGA(1, 3)
GAMOA(2, 1)=XD*OMEGA(2, 1)
GANMA(2, 2) =YD*OMEGA (2, 2)
GAMMA (2 ,3) =ZD*OMEGA (2 ,3)
GAIMKA(3, 1)=XD*ONEGA(3, 1)
GAMMA(3,2)-YD*OMEGA(3,2)

GAMMA(3,3)-ZD*OMEGA(3,3)3

VP=VP-G*RHO*( (GAMMA(1,1)+GAMMA(1,2)+GAMMA(1,3))
* 4(GANMA(2,1)+GAMMA(2,2)+GAMMA(2,3))

* +(GANMA(3,1)4-GAMMA(3,2)+GAIMMA(3,3)))3

GXP-uGXP+G*RHO* (OMEGA (1, 1) +OMEGA (1, 2) +OMEGA (1, 3) )
GYP-GYP+G*RHO* (OMEGA(2, 1) +OMEGA(2, 2) +OMEGA(2, 3))
GZP-GZP+G*RHO* (OMEGA(3 ,1) +OMEGA(3, 2) +OMEGA(3, 3) )

GGP(1, 1)=GGP(1, 1) +G*RHO*LAMDA(1, 1)
GGP(1,2)-GGP(1,2) +G*RHO*LAMDA(1, 2)
GGP(1,3)=GGP(1,3)+G*RHO*LAMDA(1, 3)I
GGP(2,2)=GGP(2,2)+G*RHO*LAMDA(2 ,2)
GGP(2, 3)-GGP(2, 3) +G*RHO*LAMDA(2, 3)

GGP(3,3)-GGP(3,3)+G*RHO*LAI4DA(3, 3)3

10 CONTINUE
20 CONTINUE3
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I 30 CONTINUE

GGP(2, 1)-GGP(1, 2)
GGP (3, 1) mGGP (1, 3)
GGP(3,2)-GGP(2,3)

C ROTATE GRAVITY FIELD COMPONENTS FROM PRISM FIXED TO
C INERTIAL COORDINATES
C

GG(,3-ROTI(1, 1) *GGP+R (1, 3)*G+ROTI(2*G(,3)+O(1,3) *GP(3 3
GG(21)ROTI(2,1)*GXP+RT(2,2)+RTI2,)GY(2+ROTI(2,3)*GGP(,
GG(22)ROTI(3,1)*GGP+T(3,2)*Y+ROTI(3,3)*GZP(22+OI23*~(2I ~ ~~GG(2,3)mROTI (2,1) *GGP(1, 3)+ROTI (2,2) *GGP(2,3) +ROTI (2,3) *GGP(3, 3)
GG(u1,)-ROTI(3,1)*GGP(1,2)+ROTI(1,2)*GGP(2,2)+ROTI(1,3)*GGP(3,2)

GG(3,2)-ROTI(3, 1) *GGP(1, 2)+ROTI (3,2) *GGP(2, 2) +ROTI (3,3) *GGP(3 ,2)

C GG(3,3)=ROTI(3,1)*GGP(1,3)+ROTI(2,2)*GGP(2,3)+ROTI(2,3)*GGP(3,3)

RETURN
* END
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